
1

February  2001

ELECTRICITY DEMAND ANALYSIS AND
FORECASTING –

THE TRADITION IS QUESTIONED !

N. Vijayamohanan Pillai

Working Paper No. 312



2

ELECTRICITY DEMAND ANALYSIS AND FORECASTING -

THE TRADITION IS QUESTIONED !

N. Vijayamohanan Pillai

Centre for Development Studies

Thiruvananthapuram

February 2001

This paper is part of a larger study, under the co-ordinatorship  of
Dr. K.P. Kannan at the Centre for Development Studies,
Thiruvananthapuram, on the problems of power sector in India, with
special reference to Kerala. I am thankful to Dr. K. P. Kannan for the
support and rapport to doubt the treadability of beaten tracks; to
Dr. Chandan Mukherjee, Dr. D. Narayana, Dr. Indrani Chakraborty and
others at the Centre for Development Studies for comments when the
paper was presented in a seminar; and to Rju for forgiving my absences



3

ABSTRACT

The present paper seeks to cast scepticism on the validity and value

of the results of all earlier studies in India on energy demand analysis

and forecasting based on time series regression, on three grounds. (i)  As
these studies did not care for model adequacy diagnostic checking,

indispensably required to verify the empirical validity of the residual

whiteness assumptions underlying the very model, their results might
be misleading. This criticism in fact applies to all regression analysis in

general. (ii) As the time series regression approach of these studies did

not account for possible non-stationarity (i.e., unit root integratedness)
in the series, their significant results might be just the misleading result

of spurious regression. They also failed to benefit from an analytical

framework for a meaningful long-run equilibrium and short-run
‘causality’ in a cointegrating space of error correction. (iii) These studies,

by adopting a methodology suitable to a developed power system in

advanced economies, sought to correlate the less correlatables in the
context of an underdeveloped power system in a less developed economy.

All explanations of association of electricity consumption in a hopeless

situation of chronic shortage and unreliability with its generally accepted
‘causatives’ (as in the developed systems) of population, per capita

income, average revenue, etc., all in their aggregate time series, might

not hold much water here.

Our empirical results prove our secepticism at least in the context

of Kerala power system. We find that the cost of dispensing with model

adequacy diagnosis before accepting and interpreting the seemingly
significant results is very high. We find that all the variables generally

recognised for electricity demand analysis are non-stationary, I(1). We

find that all the possible combinations of these I(1) variables fail to be
explained in a cointegrating space and even their stationary growth rates

remain unrelated in the Granger-‘causality’ sense.

JEL Classification: C22, C32, C53, L94, Q41.

Key words: India, Kerala, demand analysis, forecasting, non-stationarity,
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“Puranam ityeva na sadhu sarvam;

Na capi kavyam navam ity avadyam.

Santah pariksyanyatarad  bhajante;

Mudah parapratyayaneya budhih.”1

-  Kalidasa (Malavikagnimitra I, 2).

1.  Introduction

Electricity has become a vital input to the wellbeing of any society

and the demand for it from an ever-expanding set of diverse needs is

growing at an increasing rate. This in turn places increasing demands on

scarce resources of capital investment, material means, and man-power.

Forecasting of electricity consumption needs has thus become a

significant element of utmost necessity of the planning exercise in the

power sector. More specifically, the advent of the ‘energy crisis’ has

made crucial the need for accurate projection of electricity demand.

A large number of studies have come up in India too, toeing the

same methodology as applied elsewhere. These studies, however, are

analytically insufficient and methodologically unsound. Their results are

doubtful to the extent of their failure to fulfil model adequacy diagnostic

checking2 . Their conclusions are even more questionable on account of

their methodological failure to allow for the possible persistence of unit

root shock in the time series data used; their seemingly significant results

might be only an indication of spurious regression. Again, they failed to
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take advantage of an integrated analytical framework for long-run

equilibrium and short-run ‘causality’3  in a cointegrating space of error

correction. Moreover, to the extent that the very foundation of demand

analysis that links energy consumption to socio-economic ‘causal’

variables is shattered in the face of long-run power shortage and

unreliability, that render demand just supply-constrained, these

econometric demand analysis lose their relevance. In this light, their

pedantic attempt to correlate the less correlatables is of little empirical

significance.

In what follows we empirically prove, in the context of Kerala

power system, our scepticism on all earlier works on energy demand

analysis and forecasting. The paper is divided into four sections. The

following section is a brief theoretical discussion, introducing the most

common models for forecasting and demand analysis, the important tests

for model adequacy, the unit root problem and the related topics. In the

third section are presented our empirical results and the last one concludes

the paper with some broad suggestions.

2.  Theoretical Discussion

Forecasting Models

The forecasting methods used for electricity demand in general

may be divided into formalised and non-formalised methods.

Non-formalised methods such as some variants of Delphi (‘jury

of executive opinion’) method are in general used for forecasts for more

distant periods of time during which some changes in the structure of

the power sector must be considered.

In the case of the formalised forecasting methods, two approaches

may be distinguished in their scope:
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i) an input-output approach in which we try to penetrate the internal

structure, and to examine the internal and external linkages of

the observed object and to explain its response to input impulses;

and

ii) a statistical approach in which the object is treated as a ‘black

box’ whose internal workings are unknown.

More common are the statistical approaches that take the object as

a ‘black box’ and try to explain its mechanism on the basis of the

interconnections of the individual elements of the observed path of the

system. Here the analysis of extrapolation (or non-‘causal’ methods)

and one-dimensional or multi-dimensional regressions (or ‘causal’

methods) are used. The latter seek to explain the behaviour of the variables

and its ‘determination’ in a relationship framework, while the former

non-‘causal’ methods are solely concerned with forecasting.

Extrapolation methods, based on the assumption that the past

patterns repeat in the future, thus utilise time series data to identify past

pattern in the observations and then to project it into the future. Past

patterns in time series data are recognised in two ways – one is based on

the trend of the series, i.e., the general movement of the series in a

particular direction.  In such trend extrapolation, the general behaviour

of the variable over time (as presented in the time series data) is

determined and is then projected into the future.  Thus time is the

argument of trend functions. In the second method of extrapolation, viz.,

auto-regressive model, one or more previous values of the observations

themselves are the arguments; the order of the function is determined by

the number of previous observations used as arguments.

The extrapolation of energy demand may in general be carried out

using a number of mathematical functions such as:
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i) linear trend    :   y
t 
  =  α + β t; (1)

ii) parabola (second degree) trend    :   y
t
  = α + β t + γ t2; (2)

iii) geometric (compound) trend        :   y
t 
 = α (1 + β) t; (3)

iv) exponential trend                          :   y
t
  = α e β t; (4)

v) k-transformation  trend                 :  y
t
   = (α + βt)1/ k; (5)

vi) Growth curves; and

vii) (First order) auto-regressive model : y
t
  = α + βy

t-1
. (6)

A variation of the previous model is the logarithmic auto-regressive

model:

viii) Logarithmic auto-regressive model : log y
t
  = α + β log y

t-1.
(7)

Growth curves include logistic function and Gompertz function.

a) Logistic function : y
t  
= L / (1 + α e- β t); (8)

         and

b) Gompertz function : y
t  
= L exp(-α e- β t ); (9)

 where L is the prescribed upper limit, and ‘α’ and ‘β’ are the parameters

to be estimated. L, α, β  > 0.

In linear extrapolation, the variable to be forecast, y
t,  

is linearly

plotted against time (t), and the resulting plot is extrapolated into

reasonable future time spans. The parameter ‘β’ gives the rate of change

(slope) of the line, and dividing the rate of change coefficient by the

average value of y
t  

gives an average (arithmetic) growth rate per time

unit. While in a linear trend the rate of change is constant, in a second

degree polynomial (parabola), it varies linearly with time as ‘β + 2γ t’,
‘γ’ giving the acceleration coefficient. In geometric trend extrapolation,

the logarithm of y
t
 is plotted against time and these linear semi-log plots

are then projected into the future. The geometric (compound) growth

rate is obtained by subtracting one from the anti-logarithm of (β) the
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coefficient of time (t). In extrapolation using exponential trend, the natural

logarithm of y
t  

is plotted against time. These linear semi-log plots are

then extrapolated into the future to make forecasts. In this case, the

parameter ‘β’ directly gives the (exponential) growth rate of y
t
. For

analysis, we consider only the exponential trend model in its linear semi-

log form, but not the geometric trend model. In  k -transformation trend

method, y
t 
values are transformed using an appropriate power coefficient

‘k’ lying between zero and unity. (If k = 1, we get a linear trend.) The

growth rate of this function is obtained by dividing the ‘β ’ coefficient

by the product of ‘k’ and the linear trend, ‘α + β t’.

Growth curves are used to predict the time path of a variable for

which there is a limit. The curves trace the time path of the variable in an

‘S’-form; and range from zero at ‘t = - ∞’ to the upper limit,  L,  at

‘t = +  ∞’. These curves, for example in the case of demand for durable

goods, explain cumulative market penetration (i.e., the percentage of

consumers possessing the durable goods), y
t
, as a function of time, subject

to a saturation level. The logistic function can be transformed into

log[y
t 
/(L - y

t
)] = - log α + βt, and the Gompertz curve into

log[log(L/y
t
)] =  log α - βt.

Given the value of L, the function can be evaluated on a time series

and the parameters estimated. The Gompertz curve, however, is not

symmetrical, while the logistic one is. With the Gompertz curve, the

growth in the variable in the initial stages is comparatively faster than

with the logistic curve.

In the first-order autoregressive [AR(1)] models, y
t  
is forecast on

the basis of a weighted value of the previous observation, y
t-1

. A variant

of this model is the logarithmic (log-linear) autoregressive model. In

these models one has the option of setting the intercept term (α) = 0;
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then ‘β’ in the simple autoregressive model represents the rate of change

of the series y
t
, and in the logarithmic model, the compounded rate of

growth of the series. If α ≠ 0, and β = 1, then the projection  will  increase

by  the same  absolute amount each time period (a random walk with

drift). If, on the other hand, α = 0, and β = 1, we have the naïve ‘no

change’ model (driftless random walk), giving the best prediction of y
t

in its previous value. Both linear and compounded extrapolations based

on these two autoregressive models are commonly used as a simple means

of forecasting. Note that these models involve regression with a lagged

dependent variable. If the additive error process is serially correlated,

the coefficient estimates will be inconsistent.

Another extrapolation method based on previous values is moving

average  model. Here, for example, from a monthly time series, the

forecast for the next month may be obtained by the simple average of

the values over the last 12 months. Instead of assigning equal weights to

all the 12 values (such as 1/12 in the above case), it is usual that recent

values are weighted more heavily as more recent values of y
t
 play a

greater role than earlier values. This method constitutes exponentially

weighted moving average  model.

In any given case, such regression functions need not be equally

convenient.  A judicial selection of an appropriate model in the given

objective condition is all the more significant. For instance, in the case

of electricity consumption, numerous analyses have revealed that three

very different time intervals can be defined for the long-run development

of individual countries. The first corresponds to low values of energy

consumption per capita and is marked by a considerable variation in

annual increments. After having reached a certain value of the per capita

consumption, the development becomes steadier and its trend begins to

conform to an exponential pattern. Annual increments stabilise and
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assume a normal distribution. Having achieved a certain development

level, the growth gradually slows down, requiring functions with

decreasing annual increments for extrapolations (Lencz 1977: 85).

Simple extrapolation of historical growth rates had presented

reasonably accurate results for decades (Tyrrell 1974). In fact, the post-

World War II demand for electricity in the United States had been

recognised to have a consistent exponential growth (uniformly in all the

sectors: residential, commercial and industrial) and this is a well

documented phenomenon (Tansil and Moyers 1974). Later on, however,

it was felt questionable whether these trends would remain unchanged

in the future, whether the simple extrapolation technique would provide

accurate predictions of the future, in the face of the changes observed to

occur in many of the underlying economic factors. This scepticism was

well-confirmed by the findings of Chapman, Tyrrell and Mount (1972)

who explained electricity demand growth as an econometric function of

four ‘causal’ factors: population, per capita personal income and the prices

of electricity and natural gas, and compared electricity demand

projections obtained from this model with the extrapolated estimates of

the government and industry.

This pioneer econometric model has since been refined to reflect

more accurately the behaviour of each class of electricity consumers,

by, say, incorporating price of electric appliances as an additional

argument, formulating variable elasticity model (e.g., to account for

spatial heterogeneity), instead of constant elasticity one, and by

employing more consistent estimation techniques (e.g., instrument

variable estimation versus the familiar ordinary least squares). Such

demand analysis has facilitated to estimate the ‘effect’ of a variable on

electricity demand in terms of elasticity measures; if the model is specified

in logarithms, the coefficient of an argument directly gives the demand

elasticity with respect to that variable.
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To account for the dynamic characteristic of demand, a lagged

dependent variable is usually used as a regressor in the log-linear model

with a partial adjustment mechanism (Koyck distributed lag with

geometrically declining weights). This specification facilitates to

distinguish between short run and long run elasticities. Thus while the

coefficient of the price variable in this model represents the short run

price elasticity of demand, the long run price elasticity is obtained by

dividing the short run coefficient by one less the coefficient of the lagged

dependent variable used as a regressor, i.e., by the rate of adjustment.

However, the presence of the lagged dependent variable, as already noted,

makes the ordinary least squares (OLS) estimator inconsistent due to

the possible correlation between the lagged endogenous variable and

the random variable, as well as the serial correlation among the successive

values of the latter.  Hence the significance of instrument variable

estimation.

It should be pointed out that the use of such models is connected

with the prognosis of the independent variables. This in turn may involve

macro-econometric modelling4 .

A classical survey of the studies on the demand for electricity (in

the U. S.) was given by Taylor (1975) in The  Bell Journal of Economics,

and it was later on updated and extended to natural gas, heating fuels,

diesel and aviation fuels, coal, and gasoline (Taylor 1977).  In

summarising the empirical results on the demand for electricity in his

survey paper in 1975, Taylor concluded:

(a) The price elasticity of demand for electricity, for all classes of

consumers, is much larger in the long run than in the short run.

(b)  This holds for the income elasticity of demand.



12

(c)  The long run price elasticity of demand is indicated to be

elastic.

(d)  The evidence on the magnitude of the long run income

elasticity is much more mixed. Estimates range from 0 to 2, and clearly

depend on the type of model employed.

Power Consumption Forecasting in India

At the all-India level, forecasts of electricity requirement
and demand are made by the Planning Commission and by the
Annual Electric Power Surveys (APS) convened by the Ministry
of Energy, the Central Electricity Authority (CEA) being the
Secretariat to the APS. The two bodies do have extensive
discussion and this usually leads to a reconciliation of results.
Still, subtle differences exist between the methodologies employed
by them.

The Planning Commission estimates electricity demand as
part of its macro-economic analysis for all the sectors of the
economy. Industrial power demand is estimated for a selected set
of ‘major’ (i.e., very power intensive) industries by applying
consumption norms to production targets. The rest of the industrial
sector is assumed to consume some proportion of the power
consumption of these major industries. Railway and irrigation
requirements are also projected, based on targets and consumption
norms. For all other sectors – domestic, commercial, public
lighting, water works, and miscellaneous – power consumption
is estimated using trend extrapolations or regression analysis that
relates sectoral growth rates to electricity requirements. The
Planning Commission also uses input-output model to check the
consistency of the macro level estimates.

On the other hand, the projection by the APS of power
consumption of the industry starts with a detailed survey of major
industries (that demand 1 MW or more of power) on their
estimated requirements. For all other sectors, almost the same
methods are used by the APS as by the Planning Commission,
many of the coefficients of output-electricity relationship being
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identical. However, the APS relies more on trend extrapolation
than on ‘causal’ demand analysis; further, the APS exercises are
carried out first State-wise, then region-wise and finally at the
aggregate national level. In fact, the APS State-wise forecasts
form the basis for power requirement estimates of the SEBs and
State governments. The APS position is of immense significance
for the States, since the State level power sector investment
programmes are attuned to these forecasts and stand to influence
the case for Central Plan assistance.

The APS, while providing disaggregated data, unlike the
Planning Commission, suffers from its length of preparation and
the considerable cost involved in organising a detailed survey of
so many units throughout India. Furthermore, it has been found
that the APS may often be upwardly biased. The APS forecasts
exceed the demand met by between 20 and 80 per cent, and the
divergence generally increases in the later years, as might be
expected. Thus the energy consumption forecasts for Kerala by
the successive APS since the 12th APS, for 1994 are in the order
of 12466, 9328, 9409, and 8567 million units (MU) respectively
(by the 12th, 13th, 14th, and 15th, the latest, APS). It should, however,
be pointed out that it does no good to compare these forecasts
with the actual demand met (about 7027.7 MU of energy internally
sold) in Kerala, fraught with severe power cuts and load shedding.
One way to account for such upward divergence is to regard it as
reflecting the unsuppressed demand more faithfully than the
realised demand.

No econometric study of electricity demand had dealt with the

decreasing block pricing in a completely satisfactory way, and the

estimates of price (as also income) elasticities probably contained biases

of indeterminate sign and magnitude as a consequence. Taylor’s

suggestions (1975) to deal with this problem were two-fold:

(a) Multi part tariffs require the inclusion of marginal price and

intramarginal expenditure as arguments in the demand function, and

(b) The prices employed should be derived from actual rate

schedules.
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All the studies (in the US) had used either ex post average prices

or prices derived from Typical Electric Bills, an annual publication of

the US Federal Power Commission. In response to Taylor’s suggestions,

most of the studies since then have utilised ‘the wisdom of employing

electricity prices from actual rate schedules’. Several studies have also

sought to improve modelling of the dynamics of electricity demand

through inclusion of stocks of electricity consuming appliances in the

demand function, and also the possibilities of inter-fuel substitution. Some

other studies have utilised date on individual households, small

geographical areas, or the area served by a utility, in a bid to utilise a

data set of higher quality than that provided by data at the state, or national

level, as well as to avoid (or at least reduce) aggregation bias in estimates

of price and income elasticities.

Demand Forecasts for Kerala

Demand projections for Kerala based on the 12th, 13th, 14th

and 15th APS results are in consideration now in the State. A steady
decrease in the peak demand/energy consumption  requirements
is discernible in each of these forecasts that is attributed to some
restrictions and revisions in the trends relative to the base year,
(reflecting the increasing quanta of suppressed demand due to
lack of generation capability). The State has accepted the 14th

APS as ‘more dependable’ (Government of Kerala, Report of the
Steering Committee on Energy and Power, Ninth Five Year Plan,
1997-2002, State Planning Board, Thiruvananthapuram, Feb.,
1997, p. 12); whereas the Balanandan Committee (to study the
development of electricity in Kerala) finds the 15th APS ‘as the
better estimates for future planning’ (Report, Feb., 1997, p.37).
Considering the divergences in these forecasts of the APS for
Kerala (as shown above, for example, for 1994), the State Planning
Board constituted a working group to study the demand forecasts
for Kerala. The committee used a log-linear model and growth
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rates of 4.72, 10, and 15 per cent for the HT and EHT industries
to arrive at three different demand projections. The domestic
demand projections in all these exercises were based on the growth
of population as per the Census report. For the other sectors, the
projections were made based on the trends (using semi-log scale).
It should be noted that the energy demand forecast for 1994 by
the Committee is only 8945 MU.

International Energy Initiative (IEI), Bangalore, has put
forward a Development Focused End-Use Oriented, Service
directed methodology (DEFENDUS) for estimating demand and
supply of energy in an energy system, and an exercise based on
this has been done for the KSEB. This methodology, with its twin
focus of developed living standard and improved end-use
efficiency, seeks to estimate  demand for a particular energy
source/carrier in a given year based on two variables – the number
of energy users and their actual energy requirement in any base
year as well as the expected changes in the subsequent years. The
total energy demand is then equal to the aggregate demand of all
the categories of users for every end-use.

Model Adequacy Diagnosis

In addition to the usual parameter significance tests, demand

analysis and forecasting models are evaluated for their simulation

potential also. The simulation error measures, signifying the deviation

of the simulated variable from its actual time path, which we consider in

this study are the Theil inequality coefficient (TIC) and  its 3 components.

TIC is a very useful simulation statistic related to root mean square

error (RMSE), which is the square root of the mean of the squared

deviations between the simulated and the actual values, and applied to

the evaluation of historical simulations or ex post forecasts. It is given

by the ratio of the RMSE to the sum of the square roots of the mean
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squared values of the simulated and the actual data series, such that it

will always fall between 0 and 1. If TIC = 0, the simulated and the actual

series coincide for all  t  and there is a perfect fit. If TIC = 1, on the other

hand, the predictive performance of the model is the worst. The TIC is

decomposed into 3 components, bias proportion (BP), variance proportion

(VP), and covariance proportion (CP), with BP + VP + CP = 1. The BP

is an indication of systematic error, since it measures the extent to which

the mean values of the simulated and actual series deviate from each

other. Whatever be the value of the TIC, we would hope to obtain a BP

much closer to zero for a good fit. The VP indicates the ability of the

model to replicate the degree of variability in the variable under study. If

VP is large, it means that the actual series has fluctuated considerably

while the simulated series shows little fluctuation, or vice versa, which

is quite undesirable. We would hope to see minimum variability between

the two. The CP measures the unsystematic error, i.e., it represents the

remaining error after deviations from average values and average

variabilities have been accounted for. Since it is unreasonable to expect

simulations perfectly correlated with actual series, this component of

error is less problematic. In fact, it is generally accepted that for any

value of TIC > 0, the ideal distribution of inequality over the 3 components

is BP = VP = 0, and CP = 1.

An important stage, however, that is to  precede hypothesis testing

in forecast modelling is model adequacy diagnostic checking, one of the

three concerns in this paper. The fitted model is said to be adequate if it

explains the data set adequately, i.e., if the residual does not contain (or

conceal) any ‘explainable non-randomness’ left from the (‘explained’)

model. It is assumed that the error term in the model is a normally

distributed white noise5  (with zero mean, constant (finite) variance, no

serial (auto) correlation and no (cross) correlation with the explanatory

variables). Since the ordinary least squares (OLS) estimators are linear
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functions of the error term, (under its normality assumption) they

themselves are normally distributed. This normality assumption is

essential for deriving the probability (sampling) distributions of the OLS

estimators and facilitates hypothesis testing, using t and F statistics, which

follow t and F distributions only under normality assumption, in finite

samples. Hence a diagnostic checking on normality assumption must be

carried out  before proceeding with hypothesis (significance) tests. The

normality test we report here is described in Doornik and Hansen (1994);

it tests whether the skewness and kurtosis of the OLS residuals correspond

to those of a normal distribution. A reasonably high probability (p-) value,

associated with a small test statistic value, indicates non-rejection of the

normality assumption. It should also be noted here that the mean of the

OLS residuals is zero by construction when an intercept is included in

the model.

The no serial correlation assumption may be tested by checking

whether the residual autocorrelation coefficients are statistically zero

compared with standard deviation limits. Alternatively, we can test the

joint hypothesis that all the autocorrelation coefficients (for a given lag)

are statistically zero, using the residual correlogram (‘portmanteau’)

statistic, viz., Ljung-Box (1978) statistic6 . Too large a value of the

‘portmanteau’ statistic  can be viewed as evidence against model

adequacy, or conversely, a large p-value confirms model adequacy.

However, as residual autocorrelations are biased towards zero, when

lagged dependent variable is included as regressor in the model, this (as

well as Durbin-Watson, DW) statistic is not reliable. The correct

procedure in such conditions is to use Lagrange Multiplier (LM) test as

residual correlogram; the F-form LM test, suggested by Harvey (1981),

is the recommended diagnostic test of no residual autocorrelation. Durbin

h test for first-order serial correlation is a LM test. It should also be

noted that a low DW statistic need not be due to autoregressive errors,
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warranting correction for first-order autoregression7  (AR(1)). Mis-

specifications in time series data can also induce serious serial correlation

among the residuals, to be reflected in low DW statistic. The RESET

(Regression Specification Test, due to Ramsey 1969) tests the null of no

functional form mis-specification, which would be rejected if the test

statistic is too high.

In addition to these, the assumption of no-heteroscedastic errors

should also be checked, using, say, White’s (1980) general

heteroscedasticity (F-) test; a small p-value (associated with large F-

value) rejects the null of no heteroscedasticity in errors. Often the

observed serial correlation in errors may be due to what is called

autoregressive conditional heteroscedasticity (ARCH) effect, that makes

the residual variance at time t depend on past squared disturbances (Engle

1982). Hence it is advisable that one test for the ARCH effect too before

accepting the routine statistics at face value. We can also test for the

instability of the parameters in the model through a joint (F-) statistic,

large values of which reveal parameter non-constancy and indicate a

fragile model with some structural breaks (Hansen 1992). Note that the

indicated significance is valid only in the absence of non-stationary

regressors.

Unit Root Problem

This is the second of our concerns.

From a theoretical point of view, a time series is a particular

realisation (i.e., a sample) of a stochastic process. If the underlying

stochastic process that generates the series can be assumed to have finite

parameters and to be invariant with respect to time, then the process (as

well as its realised series) is said to be stationary. This simply means that

the mean, variance and autocovariances of the series are all constants. In

this case, i.e., if the process is stationary, the time series can be described
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by a simple algebraic model. If, on the other hand, the characteristics of

the stochastic process change over time (i.e., is non-stationary), it is not

possible to model the process in terms of an equation with fixed

coefficients, estimated from past data.

For an instance, consider the process given by the first order

autoregressive, AR(1), model with α  =  0,

y
t
  = ρy

t-1  
+ u

t
,    (10)

where u
t
 is a white noise and ρ  is the root of  (10). If   | ρ| < 1, the process

is dynamically stable (i.e., stationary) and if | ρ | > 1, it is dynamically

explosive (i.e., non-stationary).  If the process has a unit root, i.e., if

|ρ| = 1,  the process never dampens down nor explodes. In this case, y
t

can be represented, through successive substitution and assuming that

the initial value (of y
t
 at t = 0) y

0
 = 0, in terms of the cumulation of all the

past shocks: y
t
 = u

t
 + u

t-1
 + ..  = Σ u

i 
 for i = 1, 2,…,t; thus the behaviour

of y
t
 is determined solely by the cumulation (from past to the present) of

random shocks. That is the shock persists and the process is non-

stationary8 . Thus unit root problem refers to non-stationarity problem of

economic time series. In this case, the process has a zero mean (that is,

its trend, Σu
i 
 for  i = 1, 2, …, t; is stochastic, that cannot be predicted

perfectly), but its  variance and autocovariances increase infinitely with

time9 .

With a unit root, the above process in (10) is called a random walk

(without drift), in recognition of the similarity of the evolution of y
t 
 to

the random stagger of a drunk. Thus the change in y
t
 , i.e., the first

difference ∆y
t
 = y

t
 - y

t-1 ,
 is simply a (stationary) white noise (u

t
) and is

hence independent of past changes. Thus in this case y
t
 can be made

stationary through first-differencing. A series that can be made stationary

through differencing is said to belong to difference stationary process

(DSP) class.
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Adding a constant (α ≠ 0) to the above simple random walk model

yields a random walk with drift, accounting for a deterministic trend

also in the series, upward or downward depending on α > or < 0. The

process in this case can be written as  α t + Σu
i 
 for  i = 1, 2, …, t, so that

the mean, variance and autocovariances of the process are all functions

of time. On the other hand, for a stationary (less-than-unit root) process,

all these characteristics are constant and this property is made use of in

econometric estimation. Remember that the OLS estimator from a

regression of y
t
 on x

t
 is the ratio of the covariance between y

t
 and x

t
 to

the variance of x
t
. If y

t
 is a stationary (|ρ| < 1) variable and x

t
 is non-

stationary (|ρ| = 1), the OLS estimator from the regression of y
t
 on x

t

converges to zero asymptotically, because the variance of x
t
, the

denominator of the OLS estimator, increases infinitely with time and

thus dominates the numerator, the covariance between y
t
 and x

t
. Thus

the OLS estimator cannot have an asymptotic distribution. This is the

unit root (non-stationarity) problem.

Results from regressions with non-stationary variables can be very

much misleading. Granger and Newbold (1974) found that the regression

coefficient estimated from two series generated by independent random

walk processes was statistically significant, with very high R2, but very

low DW statistic (indicating high autocorrelation in residuals). When

the regression was run in first differences of the series, the R2 was close

to zero and the DW statistic close to 2, thus proving that there was no

relationship between the series and the significant results obtained earlier

was spurious. Hence they suggested that the event R2 > DW meant

‘spurious regression’ and the series should therefore be examined for

association by running regression in the first differences of the variables.

Plosser and Schwert (1978) gave further empirical evidences in favour

of first differencing in regression models.
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Trend removal via differencing to induce stationarity in non-

stationary series is an important stage in autoregressive-integrated-

moving average (ARIMA) model building (Box and Jenkins 1976). If a

series requires differencing k times to be stationary, the series is said to

be integrated of order k, denoted by I(k). In the earlier example of random

walk model (10), y
t
 is I(1) variable, while ∆y

t
 is I(0), stationary, variable.

At the same time, detrending has been widely used in regression

analyses; residuals obtained from such detrending models, regressing

economic time series on time, have been interpreted as cyclical

components in the context of business cycle theory10 . Such models, taking

the variables in logarithm have also been used to estimate trend growth

rates in historical contexts (Craft et al. 1989 a, b). The question of the

choice between differencing and detrending has subsequently led to

recognising the differentiation between difference stationary and trend

stationary series. A process that is stationary around a deterministic trend

is then called a trend-stationary process (TSP, so that the series can be

detrended). The model x
t 
= α + βt + u

t
, with finite mean (α + βt), and

constant variance (σ
u
2) over the sample period, represents a TSP. The

mean, though a function of time, is perfectly predictable given the values

of time and the parameters  α  and β, and represents a deterministic

trend of the non-stationary x
t
. On the other hand, the driftless random

walk model, y
t
 = y

t-1  
+ u

t
, with a zero mean and a time-varying variance,

represents a DSP (as ∆y
t
 is stationary). It has a stochastic trend,

incorporating all the past shocks (Σu
i 
 for  i = 1, 2, …, t, which is hardly

predictable) that have persistent effect on the level of y
t
. For a random

walk with drift, there is a deterministic trend (αt) also, buried in the

noise component11 .

Thus it becomes essential to identify the true nature of a non-

stationary series i.e., whether it belongs to TSP class (described by
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deterministic trend) or to DSP class (integrated processes described by

stochastic trend and also a deterministic trend, if α ≠ 0). In regressions

with TS series, inclusion of a time trend in the model will detrend the

variables12 . With DS series, on the other hand, cointegration modelling

is required, if feasible. The first step however is to deal with the problem

of discrimination between TSP and DSP models.

The first ever attempt at such a model selection was by Nelson

and Plosser (1982), though they accomplished it as a (nested) hypothesis

testing. They tested the null hypothesis that a time series belongs to DSP

class against the alternative that it belongs to TSP class, using the

(augmented) Dickey-Fuller unit root tests (Dickey 1976; Fuller 1976;

Dickey and Fuller 1979). They started with a TSP model in which the

errors are serially correlated (in first order):

y
t 
= α + βt + u

t
, and u

t
  = ρu

t-1  
+ e

t
,

where e
t
 is assumed to be Gaussian white noise.  Nesting these two

models13  gives:

y
t 
= α + βt + ρ[y

t-1 
- α - β (t - 1)]+ e

t
, or

y
t 
= δ + γt + ρy

t-1 
+ e

t 
,      (11)

where δ = α (1 - ρ) + βρ  and  γ = β (1 - ρ). After observing the sample

autocorrelation function of the first differences of the series, Nelson and

Plosser included in the above model, lagged values of  ∆y
t
 as additional

regressors to correct possible serial correlations in the errors (as in ADF

testing procedure). The null hypothesis to be tested is Ho:

ρ = 1 (and γ = 0), against the one-sided alternative | ρ | < 1. If the unit

root null is rejected, then y
t
 belongs to the TSP class, otherwise to the

DSP class. Note that in this Bhargava formulation of the model, if

ρ = 1  then γ  = 0,  and  y
t
 (under the null) is a random walk with drift
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(i.e., DSP). However, the usual t-test cannot be used to test the null

hypothesis of  ρ = 1 in the above equation, since under this null, y
t
 is I(1)

and hence the t-statistic does not have an asymptotic distribution. The

relevant asymptotic distribution, based on Wiener processes, is known

as Dickey-Fuller distribution and Fuller (1976) provides the critical values

of these statistics. Nelson and Plosser found that 13 out of 14 US

macroeconomic time series they analysed belonged to the DSP class

(the exception being the unemployment rate), the autoregressive unit

root null having failed to be rejected. The study has been followed by a

large number of empirical analyses, with different unit root tests

procedures, that have basically confirmed the findings.

In a second model with a constant only (i.e., no trend, α  ≠ 0,

β = 0) in the Bhargave type formulation, we have

y
t 
=  δ + ρy

t-1 
+ e

t 
,    (12)

where δ = α (1 - ρ); if  ρ = 1, then δ = 0, and (under the null) we have a

drftless random walk or DS series. Under the alternative, | ρ | < 1, y
t
 is a

stationary series around  δ/(1 - ρ). If the unit root null is not rejected in

the first model, we can check for another unit root in the series, by

applying the ADF test to the differenced series14 . Since our inference

from the non-rejection of the unit root null in the first model characterises

the series as difference stationary with drift, we can use the second model

in differences for testing for a second unit root or stationarity. If the null

is rejected, then the first-difference series is stationary15 .

Perron (1989), however, demonstrated that structural breaks in the

series can lead to biased results in favour of presence of persistence

(when in fact there is not).  Assuming that the shock (such as the Great

Crash of 1929 and the oil price shock of 1973) is exogenous (i.e., known

structural break), he proposed a modified DF test for a unit root in the
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noise function. He considered three different models under the unit root

null. The models allowed for an exogenous change i)  in the level

(intercept) of the series (a ‘crash’),  ii) in the rate of growth (slope), and

iii) in both the intercept and slope of the series.  The general model (iii)

is given by:

y
t 
= α + ρy

t-1 
+ βt  +γDT

t
 + θDU

t 
+  Σδ

i
∆y

t-i 
+ u

t
,

where DU
t
 = 1 if t > TB,  0 otherwise, and

DT
t
 = t  if t > TB,  0 otherwise; TB refers to the time of break and the

summation is over i = 1, 2, …, p.

The variable DU (dummy model) captures the possibility of

‘crashes’ and DT (spline model16 ), growth changes. Results from a Monte

Carlo experiment (Perron 1989) showed that if the magnitude of the

shock is significant, one can hardly reject the unit root null, even if the

series is stationary with a broken trend and white noise errors (i.e., with

no unit root in the noise term). Perron tabulated the critical values for

the unit root tests in the presence of structural break, for given values of

λ = TB/T, the ratio of pre-break sample size to total sample size. Applying

the modified DF test to the same US macroeconomic series as used by

Nelson and Plosser (1982), Perron reached the ‘startling conclusion’ that

most of the series (except three) ‘are not characterised by the presence

of a unit root and that fluctuations are indeed transitory’ (Perron 1989:

1362). This paper has sparked a controversy and his assumption of a

known, exogenous break has been severely criticised as raising the

problem of pre-testing and data-mining for the choice of the break date.

Several methods have since been developed for endogenising the choice

of break point into the testing model, and some of the results have reversed

Perron’s conclusions.
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Modelling relationships among non-stationary variables has

essentially involved their differencing to induce stationarity. Solving the

non-stationarity problem via differencing is, however, equated to

‘throwing the baby out with the bath water’, because differencing results

in ‘valuable long-run information being lost’. Most of the economic

relationships are stated in theory as long-term relationships between

variables in their levels, not in their differences. We need to conserve

and utilise in analysis this long-run information contained in the level

variables, and at the same time, we have to be on the watch for spurious

regression of integrated variables. Both these seemingly irreconcilable

objectives could be achieved by means of cointegration mechanism.

 The concept of cointegration was introduced by Granger (1981)

and Engle and Granger (1987), and is used as a statistical property to

describe the long-run behaviour of economic time series. If two series y
t

and x
t
 both are I(1), then in general, any linear combination of them will

also be I(1). However, an important property of I(1) variables is that

there can be some linear combinations of them that are in fact I(0), i.e.,

stationary. Thus, a set of integrated time series is cointegrated, if some

linear combinations of those (non-stationary) series are stationary.

Let us define u
t
 as:

 u
t
 = y

t
 - βx

t 
,     (13)

where both y
t
  and x

t
 are I(1). If u

t
 is I(0), then y

t
 and x

t
 are said to be

cointegrated, denoted by CI (1, 1). Since both the variables are I(1), they

are dominated by ‘long wave’ components, i.e., they are on the same

wave length. But u
t
, being I(0), does not have these ‘long wave’

components as these ‘trends’ in y
t
  and x

t
 cancel out to produce stationary,

I(0), u
t
 (see Griffiths, et al. 1993: 700-702). β is called the constant of

cointegration17 .
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Thus, if two variables are integrated of the same order (having the

same ‘wave length’), they can be cointegrated. In this light, the regression

of these two variables, y
t
  = βx

t
 + u

t
 makes sense (is not spurious), because

the variables do not tend to drift apart from each other (i.e., they move

together) over time. This then implies that there is a long-run equilibrium

relationship between them.

Engle and Granger (1987) discuss two simple tests of the null

hypothesis that y
t
  and x

t
 are not cointegrated, that is the u

t
 is I(1). The

first, Durbin-Watson Cointegrating Regression (DWCR), test is based

on the DW statistic from the relationship between y
t
  and x

t
 and tests, on

the null hypothesis that the residual u
t
 is I (1), whether DW is significantly

different from zero18  using the critical values provided by Sargan and

Bhargava (1983: Table 1). Also, the R2 value will be very high for

cointegrated variables. The second test directly examines residuals

through an ADF  test for unit root.  Thus, given two variables  y
t
 and x

t
,

if they are indeed I(1) processes, verified through some unit root tests, a

simple method of testing whether they are cointegrated is to estimate the

‘cointegrating regression’:

y
t
  = α + βx

t
 + u

t
 ,                  (14)

and then test whether the residual u
t
 is I(0) or not, using the t-ratio on

u
t-1

  from the regression of ∆u
t
 on u

t-1
  and lagged values of  ∆u

t
, in a way

analogous to the unit root (ADF) testing discussed earlier. If u
t
 has no

unit root, that is, the linear combination u
t
 = y

t
 - α - βx

t
 is I(0),  then there

exists a cointegrating relationship between y
t
 and x

t
. The DF and ADF

tests in this context are known as Engle-Granger (EG) test or Augmented

Engle-Granger (AEG) test.  Engle and Granger (1987) prefer this latter

test as having more stable critical values, though Banerjee, et al. (1986)

make a case for DW statistic on the grounds that its distribution is

invariant to nuisance parameters such as a constant.
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A significant recognition in this context is the model adequacy

diagnosis implied in the single-equation residual-based cointegration

tests. Remember two (or more) non-stationary variables integrated of

the same order can be cointegrated, if the residuals from their linear

relationship are a I(0), or stationary, series, i.e., white noise! This is

nothing but the model adequacy criterion in regression approach. In this

light, residual based cointegration tests can be a final step in model

adequacy diagnostic checking.

The residual based single equation methods fail to test for the

number of cointegration relationships when there are more than two

variables. Hence the use of system methods in vector autoregression

(VAR) framework that treats all the variables as endogenous. The most

popular system method is the Johansen (or Johansen and Juselius, JJ)

method, based on canonical correlations (Johansen 1988; Johansen and

Juselius 1990), that provides two likelihood ratio (LR) tests.  The first,

trace test, tests the null hypothesis that there are at most  r  (0 ≤ r ≤ n)

cointegrating vectors, or equivalently, n–r  unit roots. The second,

maximum eigenvalue test, tests the null hypothesis that there are  r

cointegrating vectors against the alternative of  r+1  cointegrating vectors.

Johansen and Juselius recommend the second test as better. Reimers

(1992) argues through a Monte Carlo study of the Johansen LR test that

the test statistic be corrected for the number of estimated parameters to

obtain satisfactory size properties in small samples. The correction is by

replacing  T  by  T–np  in the test statistic, where T  is the number of

observations, n  is the number of variables and  p  is the lag length of the

VAR.

If  y
t
 and x

t
 are both I(1)  and cointegrated, then by the Granger

Representation Theorem (Engle 1983; Engle and Granger 1987), there

exists an ‘error correcting’ data generating mechanism through the
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‘equilibrium error’, u
t
. In an error correction model (ECM), the

‘equilibrating’ error in the previous period, u
t-1

, captures the adjustment

towards the long-run equilibrium. This error correction term (EC), u
t-1

,

is said to ‘Granger cause’ ∆y
t
 or ∆x

t
 (or both). As u

t-1
 itself is a function

of y
t-1 

and x
t-1

, either x
t
 is ‘Granger caused’ by y

t-1 
 or y

t
 by x

t-1
.  That is,

the coefficient of EC contains information on whether the past values of

the variables ‘affect’ the current values of the variable under

consideration. A significant coefficient implies that past equilibrium errors

play some role in ‘affecting’ the current outcomes. This then implies

that there must be some ‘Granger causality’ between the two series in

order to induce them towards equilibrium. The short run dynamics are

captured through the individual coefficients of the difference terms.  Thus

ECM brings together ‘Granger causality’, concerned with short term

forecastability, and cointegration, concerned with long run equilibrium.

3.  Analysis

Model Adequacy Diagnostic Checking

We start with an analysis of the time series data on the internal

consumption of electricity (in million units, MU) in the Kerala system

from 1957-58 to 1998-99 in the framework of the common extrapolation

models19 . We are not considering the growth curves, which are more

appropriate for the demand for durable goods with an acceptable market

saturation level. Table 1 reports the OLS estimates of the parameters

along with other statistics of these models – the four trend extrapolation

models (linear, quadratic, k-transformation and semi-log or exponential)

and the two first order autoregressive [AR(1)] ones. The ‘k-

transformation’ model has been turned out to be either defined or

significant only for the values of k = 0.3, k = 0.4 and k = 0.5, out of a

range of values tried; we report only the results for  k = 0.5.
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All the models appear to have highly significant fit, based on the

conventional tests (R2, F- and t- values), to the immediate satisfaction of

an average researcher. The estimated measures of simulation error – TIC

and its three components – also offer pleasant results. By these measures,

it appears that all the models in general have very good fitting

performance, with very low TIC, along with an almost zero BP in most

cases and a close to zero VP. In fact, this close correspondence between

the actual and the fitted is an indication of non-stationarity of the series

(Doornik and Hendry 1997: 33); but an average investigator,

unaccounting for this, might be easily misled by the seemingly significant

results. Here lies the significance of model adequacy tests.

Now see the danger signal of ‘spurious regression’ (R2 > DW)

blazing in most of these models, where diagnostic tests for model

adequacy fail to recognise them. Thus, although for all the four trend

extrapolations, the normality assumption of the residuals cannot be

rejected20 , the important stationarity conditions all stand violated. The

very low DW statistics for these four models indicate possible positive

first-order serial correlation among the residuals that leaves the estimated

standard errors unreliable. But this is not the only problem; the LM

statistic is highly significant, such that the null of no residual

autocorrelation gets rejected with almost certainty in all the four cases21 .

So does the null of no heteroscedasticity in errors for the linear and

semi-log models. Thus in these two models, the observed residual

autocorrelation  may be due to the ARCH effect also22 . In the k-

transformation model too this is so (i.e., the error variance is serially

correlated), but at 10 per cent significance level only, while in the

quadratic trend model,  at 25 per cent level.  The joint parameter stability

statistic is large enough to reject the null hypothesis of parameter

constancy and of a strong model in all these cases; and so is the RESET

(F-) statistic such that the null of no functional form mis-specification
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too is rejected (except the k-transformation model, for which these

statistics could not be estimated); the observed autocorrelation can be

due to mis-specified functions also.

The effects of first order autoregressive [AR(1)] correction on

linear, quadratic and semi-log trend models23  are also reported in Table

1. The first two models fail to recover in this exercise. The parameter

instability persists; the data remain functionally mis-specified, and the

residuals come out to be non-normal, serially correlated and

heteroscedastic. The semi-log model, on the other hand, has tremendously

improved, with no mis-specification. The errors are now statistically

normal, serially uncorrelated and homoscedastic; the null hypothesis of

joint parameter constancy cannot be rejected. The series appears to be

almost stationary after the ‘quasi-differencing’, involved in the AR(1)

correction of the logarithmically transformed series. And the model may

pass safely for the next stage of hypothesis testing24 .

The two autoregressive extrapolation models offer opposite

behaviour patterns, though very low RESET statistics refute mis-

specification in both the cases. Note that the coefficient of the lagged

dependent variable used as the regressor in both the cases is almost unity!

The residuals from the simple autoregressive equation are distributed

highly leptokurtic, such that the normality test fails. The Durbin-h statistic

for the simple AR model turns out to be 0.533, which is much less than

the normal critical value of 1.645 at 5 per cent significance level,

indicating non-rejection of the null of no first order serial correlation.

However, the LM test confirms the presence of overall serial correlation

in the errors, which are also heteroscedastic, as the White and ARCH

tests indicate. The model is also fragile with joint parameter non-

constancy. The logarithmic autoregressive model, on the other hand,

passes all the tests – the parameters are not unstable; and the residuals

are normal, uncorreelated25 , and non-heteroscedastic also.
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Having thus proved that unwarranted application of extrapolation

models for forecasting without model adequacy tests leads to misleading

results, we now turn to examine the general practice of time series

econometric analysis of electricity demand. It goes without saying that

in the backdrop of a high standard of living, the distinctly evolved

influential matrix of socio-economic factors must have a significant say

in determining electricity consumption in Kerala – for one thing, consider

the spread effect of the ‘Gulf boom’, blooming the construction sector

and the markets for electrical and electronic appliances. Hence the

significance of a demand analysis.

In Table 2 we report the results of the econometric analysis of

electricity demand (internal consumption) in Kerala for the period 1960-

61 to 1998-99. The ‘causal’ factors considered are the ones usually used

in such studies – per capita state income (at 1980-81 prices), number of

consumers (in the place of population), and real average revenue (average

sales revenue deflated by wholesale price index number for electricity,

base: 1981-82; as a proxy for average price). The results are mixed for

the two types of models (simple and logarithmic) considered, though all

the first four models suffer from parameter instability26 . Surprisingly,

the logarithmic model (Model 2) is haunted by ‘spurious regression’

effect, which persists even in the presence of a time trend, included to

‘detrend’ the variables (Model 4). In the simple Model 1, DW test result

is inconclusive, but there is no presence of it when a time trend is included

(Model 3). Except this one, all the other three models are functionally

mis-specified also. Normality and White homoscedasticity assumptions

are violated for the simple models (1 and 3) without and with trend,

though there is no ARCH effect; and by the LM tests, residuals from all

the models are autocorrelated.
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A final model (Model 5), including a one-period lagged dependent

variable in the logarithmic mould, comes out to be non-fragile with

normally distributed and homoscedastic residuals. Note that this is the

usually used partial adjustment (short run consumption) model27 ,

appearing here with appealingly significant R2 and t-values. However,

the large Durbin-h statistic strongly rejects the null of no serial

correlation28 ; the LM (F-) test also confirms this. And the no-mis-

specification null too remains rejected. Note that the lagged dependent

variable in this model, unlike in the above autoregressive cases, has not

(as it should have) biased DW towards 2.

The upshot of the whole exercise brings into light an important

aspect in model building, in terms of the significant results of the

diagnosis for model adequacy of the two extrapolation models: semi-

log trend model with AR(1) correction and first-order logarithmic  AR

model. That important aspect is that both the models involve logarithmic

transformation and ‘quasi’ differencing of the consumption series that

could induce to some extent stationarity in the non-stationary series29 .

And this induced stationarity is reflected here through the whiteness of

the residuals.

It should be noted that while the above two models pass the

diagnosis, its failure marks the multivariate models, which might

otherwise pass all hypothesis and simulation significance tests and

mislead a researcher.

Our intention of this presentation has been to bring it home that a

non-judicious handling of regression techniques (considering only the

significance of R2 and t-values, as also the simulation error measures)

for time series analysis/forecasting could be misleading. Most

macroeconomic time series being non-stationary, a fixed-coefficients

model building endeavour is just undesirable. Successful infusion of
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stationarity into non-stationary series, however, depends on the right

choice of the appropriate method – detrending or differencing. And this

in turn depends upon the factual recognition of the true nature of these

series; i.e., whether they belong to TSP class or DSP class. In any analysis

based on time series, an identification exercise for the series must then

precede the model building stage, because of possible problems of

misleading results particularly of under-differencing30  (i.e., modelling a

DS series as a TS series). This is a possible problem with trend

extrapolation models. For instance, electricity consumption in Kerala

being a DS series with a unit root (this will be proved later on), its under-

differencing in the above trend models results in misleading results of

spurious regression. In this light should we consider the common practice

of estimating trend growth rate from semi-log (exponential) trend model.

If model adequacy tests are significant after first order AR correction,

carried out in view of R2 > DW, the coefficient of t may be interpreted as

the trend growth rate.

In this context we propose another useful model – a partial

adjustment (short run) growth rate model, regressing logarithmic

consumption on its own first order lagged term and time  (Table 1, Model

10). Most of the results from this model are the same as those from the

semi-log trend model with AR(1) correction (model  9), such that the

two models are equivalent, since the presence of the lagged dependent

variable as a regressor has the same quasi-differencing effect (in Model

10) as AR(1) correction (in Model  9); the two parameter estimates are

equal (0.798). The advantage of using Model 10 is that it gives a short

run growth rate (coefficient of t = 0.0136), a coefficient of long run

adjustment (0.798) and a long run growth rate (0.0136/(1 – 0.798) =

0.0676), the same trend growth rate from Model  9.
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In line with our interpretation of residual based cointegration test

as a model adequacy diagnostic checking, we have applied unit root

(DF) tests to the residuals from these three significant models (7, 9 and

10), and found no unit root in the noise functions, thus reconfirming

their whiteness31 . These models are thus adequate. The logarithmic AR(1)

model (7) is a random walk with drift; the intercept (0.231) gives the

approximate growth over the previous period.

 Our linear and quadratic extrapolation models with and without

AR(1) correction, as well as the econometric models 3 and 4 (models

with time trend) are good illustrations of under-differencing. In the

absence of a detailed model adequacy diagnostic checking, the ‘high

significance’ of these models would have fascinated and thus misled an

average researcher; and so it has been, unfortunately, in the case of almost

all the previous studies on electricity/energy consumption in India.

To start with, Pachauri (1977) and Tyner (1978), through regression

technique, have found very strong association between energy

consumption and economic development in India, and the latter has gone

to the extent of attempting to identify ‘causation’ between the two. A

large number of regression analysis of electricity demand (forecasting

models and ‘causative’ models, using population or number of consumers,

per capita state income or domestic product or sectoral income, average

sales revenue, etc.) have mushroomed in the luxuriant academic/

professional fields. The Fuel Policy Committee of India (1974), Banerjee

(1979), World Bank (1979), Parikh (1981) and Pillai (1981) are some of

the forerunners here, in addition to the regular exercises by Planning

Commission, CEA and SEBs. All such studies, based on time series

regression analysis, not accounting for possible non-stationarity problem

in the data series, invite scepticism about the validity and value of their

empirical results. Almost none of these studies has surprisingly cared
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for even model adequacy diagnosis!  In this light, all these studies might

be just spurious regression. They might also suffer from having

inconsistent and less efficient OLS parameter estimates by using non-

stationary variables in levels outside the cointegrating space (Engle and

Granger 1987). Hence our methodological scepticism about the

significant results of correlation or ‘causality’ found in such studies.

Unit Root Tests and Cointegration Analysis

We now therefore turn to the starting point of our time series

analysis, viz., the identification stage: finding out whether our series

belong to TSP or DSP class. The series we analyse are: (internal)

electricity consumption (C in MU) in Kerala, number of consumers (N),

average price (revenue) (AR, paise per unit) (all during 1957-58 to 1998-

99) and per capita State income (PCI, in constant Rs., during 1960-61 to

1998-99). All the variables are in logarithms; logarithmic transformation

is expected to reduce the effects of a time-varying variance in a series

and make it stationary32  (Holden, et al. 1990: 64).

Following Nelson and Plosser (1982), we base upon the Bhargava-

type formulation of two ADF test models, our conclusion and

interpretation of the unit root test results under the null and alternative

hypothesis – one with  a trend (including constant) and the other with a

constant only. In the ADF test model, the specification of the lag length

assumes that the residual (u
t
) is white noise. Hence the optimum lag

length (2 for C and PCI and 3 for N and AR in levels and 1 for all in

differences) is selected so as to achieve empirical white noise residuals33 ,

satisfying normality, stationarity and homoscedasticity assumptions

(Table 3). The selected lag was favoured by Akaike information criterion

also.  The univariate ADF unit root test  results are  reported in

Table 4.
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The DW-statistic for the level of a variable (y
t
) is a simple indicator

of its integrated property, and therefore we also report the DW-statistics

for the concerned level variables. If y
t 
is a random walk (with or without

drift), DW will be close to zero, and if it is white noise, DW will be

around two34 . The DW-statistics obtained of the levels of (the logs of)

C, N, and PCI are close to zero and that of AR is also small, indicating

the integratedness of these variables. The univariate ADF test results

also show that the unit root null cannot be rejected in all the cases – that

is, all the series we consider do belong to (drifting) DSP class. We further

check for another unit root in the series. The DW-statistics for the first-

differences of (the logs of) C and AR are around two, suggestive of their

whiteness, but those for N and PCI are small, giving some signs of

integratedness. The ADF tests, however, fail to find any more unit root,

and hence we maintain that all these series are I(1), not I (2).

Is this inference influenced by the effects on the ADF test statistic

of structural change in the series? To find out whether any significant

structural change has tended to taint the test statistic in favour of non-

rejection of the unit root null in each case, we apply Perron’s (1989) unit

root test in the presence of structural breaks. Graphical analyses35  identify

three possible breaks of ‘crashes’ (and subsequent ‘growth rises’) in the

time series of electricity consumption in 1983-84, 1987-88 and in 1996-

97, and a ‘growth leap’ in the series of customers’ number in 1979-80

and in the series of per capita income in 1985-86. The average price

series appear very much erratic and fail to help us recognise any trend

break in its temporal behaviour.

The infamous power famine inflicted on the pure hydro-power

system of Kerala by a series of drought since the turn of the 80s in league

with the defective capacity expansion planning explains the ‘crashes’ in

the power consumption series. At the same time, demand has been on
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the rise at an increasing rate reinforced by an ever-growing number of

new connections as well as connected load36 . In 1983-84, consumption

fell by about 7.2 per cent over 1981-82, and then rose by 25 per cent in

the next year; a fall of 4 per cent in consumption in 1987-88 over 1985-

86 was followed by an increase of 21 per cent in the next year, and a fall

of 5.3 per cent in 1996-97 over the previous year, by a rise of 10 per cent

in 1997-98. The growth in the number of consumers got an accelerated

fillip with the commissioning of the Idukki (Stage I) power project in

1976-77, and by 1979-80 the growth trend started to shoot up, but only

to lose some momentum during the shortage period. In (constant) per

capita income series, an insignificant growth is discernible after 1964-

65 for a few years; from 1970-71, the series appears stagnant for about

one and a half decade, and then from 1985-86, significant growth pushes

the series up forcefully – a manifestation of the ‘gulf boom’ in a liberalised

economic atmosphere.

In the face of such apparent breaks in these series, we subject them

to Perron (1989)’s unit root test and the results are presented in Table 5.

The optimum lag is identified such as to achieve white noise residuals

here also. The coefficients of t, DU and DT in the Perron’s unit root test

regression models turn out to be insignificant in the case of consumption

with break years of 1983-84 and 1987-88. These coefficients are

significant for the consumption series with a break in 1996-97 (at 10 per

cent level only), for customers’ number with break in 1979-80, and for

per capita income series with break in 1985-86. However, considering

the estimated Perron’s test statistic, in no case is it significant even at the

10 per cent level, reconfirming the presence of unit root in these series.

The series thus being integrated of the same order, i.e., I(1), we

next turn to check whether the power consumption series has a long-

term relationship with other variables under consideration, that is, whether
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there exists an economically meaningful cointegrating vector (cv) among

these variables, using  the two commonly used cointegration tests namely,

the (Augmented) Engle-Granger (AEG, Engle and Granger 1987) test

and Johansen and Juselius (1990) test. Since the cointegration test results

are sensitive to the lag length of the VAR model (Hall 1991), optimum

lag length for cointegration test is determined on the basis of the residual

mis-specification tests of the VAR model. For a lag length of 2, the VAR

model residuals have been found to be strictly white noise (Table 3).

As a first step, we compare the CRDW statistic of 0.635, obtained

from a logarithmic model37  of electricity consumption (C) with number

of consumers (N), per capita State income (PCI) and average price (AR),

with the approximate critical value of 0.641 at 5 per cent significance

level, and fail to reject the null of no cointegration among the variables

(even though the R2 is close to unity, which is an indication of

cointegration). Next we go to the AEG procedure to examine whether

the residuals from this relationship are stationary, I(0). The results up to

2 lags are reported in Table 6. Here too the non-rejection of the null of

no cointegration (or of I(1) residuals) persists even at 10 per cent

significance level for all the lags up to 2. Hence, for reconfirmation we

turn to the JJ method, which provides more robust results when there are

more than two variables (Gonzalo 1994). The JJ cointegration test results

are given in Table 7, where we use the maximum eigenvalue and trace

statistics with small sample correction (Reimers 1992). Starting with

the null hypothesis of no cointegartion (r = 0) among the variables, we

find that both the corrected maximum eigenvalue and trace statistics38

are well below the respective 95 per cent critical values, further

confirming non-rejection of the null of no cointegration among these

variables at 5 per cent level of significance; i.e., there are no common

stochastic trends and the system contains four unit roots. Hence we

conclude that the cointegrating regression is spurious: the regression
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residual is an I(1) process and there is no equilibrium in the levels of the

variables (Phillips 1986). Hence the analysis should now be proceeded

with on their differences.

We continue with these testing procedures to see if there exists

any significant relationship for C with different possible combinations

of the three ‘causal’ variables. Thus, for instance, we consider the

logarithmic model of C with N and PCI; the CRDW statistic is 0.618,

less than the critical value at 5 per cent significance level; all the AEG

test statistics up to lag 2 are also less (in absolute value) than the respective

critical values, even at 10 per cent level (Table 6). The JJ test also fails to

reject the null of no cointegration among the three variables now

considered (Table 7). Continuing with other combinations, we find that

there exists statistically no relationship at all for C with any of the three

proposed ‘causal’ variables39 .

Causality in Growth Models

The result that there exists no meaningful cointegrating vector of

interest among the variables considered (that any linear combination of

these integrated variables still remains integrated) deprives us of taking

advantage of a valid error correction representation40 , and thus analysing

the relationship among the variables in their levels, without losing

valuable long run information. This leaves us with the only option of

differencing the set of variables, proved to belong to DSP class, prior to

further analysis. Differencing, as already noted above, is recommended

for integrated series (Granger and Newbold 1974); taking differences of

logarithmic series is approximately equivalent to using rates of growth

of the series. Hence the significance of growth rate models, expressing

relationship among variables in terms of their growth rates, that is first

differences of their logarithms.
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All the four I(1) series in our consideration are therefore first-

differenced and the resultant  stationary series (as proved by ADF tests

earlier) of growth rates come in for possible choice as candidates in a

growth rate model. This selection is carried out in terms of the significance

of the variables (in growth rates) in a temporal lead-lag relationship, to

find, through pair-wise Granger-non-‘causality’ tests, whether the growth

in N, AR and PCI are the leading indicators of the growth in C.  Remember

that capacity expansion planning is based on possible growth in demand

from a growing number of consumers in conjunction with price and

income. The results are reported in Table 8. In none of the cases we can

reject the null hypothesis of pair-wise Granger-non-‘causality’. That is,

the annual growth rates of electricity consumption are not granger-

‘caused’ by those of any of the three variables, each considered in turn.

Similarly, there has been no significant temporal feedback from annual

growth rates of electricity consumption to those of any of the other

variables considered41 . Since the Granger-non-‘causality’ test is very

sensitive to the number of lagged terms included in the model, it is

recommended that more rather than fewer lags should be used. Hence

we have considered lags up to 10, obtaining the same result of non-

rejection of the null42 .

The Less Correlatables Dissected

This rather surprising result that none of the three variables

considered is eligible to be included in the growth rate model of electricity

consumption in Kerala leaves us finally with no further scope for

multivariate time series regression analysis of demand, despite the

seemingly significant scope for electricity demand analysis in Kerala,

having a high standard of living. However, these results do make some

sense in an underdeveloped power system like ours, plagued with

substantial supply bottlenecks. Our scepticism on applying regression
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method directly to non-stationary series should also descend upon the

common practice of attempting to correlate the less correlatables.

Estimating GDP-electricity use elasticity in industrialised countries where

electricity service contributes significantly to everyday life has become

a standard tool of simple analysis for some obviously general conclusions.

However, in a comprehensive international comparative study of bivariate

‘causality’ between energy use and GNP of five countries, Yu and Choi

(1985) found no ‘causality’ in the US, the UK and Poland, but observed

a unidirectional ‘causality’ from energy consumption to GNP in the

Philippines and a reverse ‘causality’ from GNP to energy consumption

in South Korea. Recently, Cheng (1995) detected in a multi-variate

framework no ‘causality’ from energy consumption along with capital

to economic growth in the US. In another study (Cheng 1997) for the

Latin American countries, he found ‘causality’ from energy use to

economic development in Brazil, but not in Mexico and Venezuela. In a

most recent study for India (Cheng 1999; the first of its kind in his

knowledge), Cheng found, in a multi-variate model, no ‘causality’ from

energy consumption to economic development, ‘which in general is

consistent with many previous studies of other countries’ (ibid.: 47),

but saw a reverse ‘causality’ from GNP to energy use, using Hsiao’s

version of the Granger-‘causality’ method.

We argue, however, that it may be unfair to map such elasticity/

‘causality’ methodology on to an alien range in an underdeveloped power

system where the contribution of the service of electricity is insignificant.

This is so even in the industrial sector in India, where power remains too

insignificant an input43 , highly substitutable by capital and/or labour,

primarily because of inadequate and unreliable supply, which has become

a long-run experience.

The methodology is questionable even in the industrialised sector

power demand analysis in a less industrialised region like Kerala, that
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too with very limited number of electricity-intensive industries. Adoption

of this methodology here then amounts to correlating the national/State

domestic product or industrial product exclusively with an insignificant

input, in violation of the ethics of a consistent and logical analytical

exercise, and results in gross specification error. Moreover, there are a

large number of small scale and cottage industries that use practically

little electricity but together contribute significantly to the industrial

product. About 41 per cent of the net State domestic product in 1997-98

that originated in the manufacturing sector in Kerala was contributed by

the unregistered firms, most of which use little electricity44 . It was found

in 1994-95 that about 66 per cent of the enterprises in rural India and

about 52 per cent in urban India did not use any energy in their

manufacturing process (Government of India 1998b : ii). Only 7.9 per

cent of the rural firms and 30.4 per cent of the urban firms in India (and

11.9 and 17.7 per cent respectively in Kerala) are reported to have used

some electrical energy in their production process in that year (ibid.: 35-

36). The contribution of the unorganised manufacturing sector, on the

other hand, in terms of gross value added to the national economy in

1994-95 was estimated at Rs. 32,274.89 crores, out of which 41 per cent

came from the rural sector; and that to the Kerala State’s economy was

at Rs. 646.64 crores, with 72.1 per cent from the rural enterprises (ibid.:

57-64).

There is in this respect another aspect also. Kerala experienced

one of the worst drought and the consequent power famine in 1983-84,

with year-long imposition of 10 to 100 per cent power cut on industries.

However, it had surprisingly no negative effect on the growth of industrial

output. The contribution of the manufacturing sector to net State domestic

product at current prices rose by 5.4 per cent over 1982-83, and that at

constant prices showed a marginal increase of 0.2 per cent in the registered

manufacturing sector and a fall of 12.3 per cent in the unregistered sector
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– this fall in the unregistered sector continued for the following years

almost till the turn of the nineties, including normal periods, indicating

the influence of some other factors. Though power cut was in force in

the three years from 1986-87 to 1988-89, the contribution at constant

prices of the manufacturing sector, though declined by 10.5 per cent in

1986-87, shot up in the following years (at 14.4 and 12.8 per cent

respectively); at current prices, however, it was steadily on the rise. The

registered sector had the very same pattern. The growth trend without a

break continued in the following years too. In 1996-97, even 35 to 100

per cent power cut had no adverse effect on manufacturing (both the

sectors) contribution (at both constant and current prices).

As already explained, all the earlier studies in India on electricity

demand45  have invariably used as ‘causal’ regressors national/State (per

capita) income, average sales revenue and population. The first two

variables in aggregate values conceal everything of the characteristics

of the units into which the analysis is paradoxically intended to make a

look. It goes without saying that the time series regression with these

variables, even if valid in a cointegrating space, yields only the macro

level elasticities over time. Consumption elasticities in the true sense,

i.e., across different income categories and tariff blocks, get suppressed

in this aggregation. Moreover, the use of time series data simply ignores

the possibility of changes of the intercept (that on an average accounts

for the influence of factors other than those considered in the model)

and of the slope of the line (that reflects the average intensity of energy

consumption with respect to that variable); using dummy variables to

account for significant structural changes might result in increasing loss

of degrees of freedom. Choice of a suitable deflator also poses problems.

Average sales revenue as a proxy for average price is pregnant

with a danger of measurement error as well. Proper estimation of price
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elasticity of demand requires, (in conformity with the suggestion made

by Taylor long back, 1975, 1977), the use of data on actual rate paid by

a cross-section of consumers, rather than the aggregate average revenue

(to the utility) over time. Average revenue might be an indicator of the

supply price in the aggregate, but never a representative of the demand

price, the particular price a customer is faced with at a decision making

juncture, especially in the context of the block rate tariff system. Average

tariff rate might be a better alternative here.

This too in its aggregation, however, conceals an important

implication of block rate structure, that makes the price of electricity

itself a function of consumption, since in the increasing block rate tariff

prevalent in Kerala/India, the price to a customer rises as the volume of

consumption increases. This in turn entails a simultaneous equations

system for electricity demand and price46  across customer categories in

different blocks of tariff. Temporal effects through changes in intercept

and slope can be checked and explained, if pooled time series cross section

data are used in this model. Thus a better alternative is electricity demand

analysis based on pooled data, subject to appropriate unit root tests.

However, such data-base is not at all available in India; and at best we

can have only a cross sectional primary survey for study.

Even here the very elasticity of electricity demand is open to serious

questioning. The price elasticity of demand loses its relevance in an

underdeveloped power system such as ours. Demand for electricity

remains largely unresponsive or less responsive to its price as it has

almost become a necessity for the basic need of lighting for the habitual

customers. In fact some studies have shown that even the domestic

customers are willing to pay much higher prices for uninterrupted supply

(Upadhyay 1996, 2000).  At the same time, energy consumption

commands a substantially lower budget share due both to lower unit
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price and to low consumption level. Thus for example, the share of fuel

and power in the total private final consumption expenditure in the

domestic market (at current prices) in India in 1997-98 was just 3.29 per

cent; and electricity consumption accounted for only 0.68 per cent in the

total. In 1980-81 and 1990-91, the share of fuel and power was 4.64 and

4.52 per cent respectively, and that of electricity, 0.40 and 0.62 per cent

respectively47 . The growth in electricity consumption has not been strong

enough to facilitate a pronounced rate of substitution for other fuels,

especially, the traditional one, kerosene oil. The percentage share of

electricity in the private final consumption expenditure on total fuel and

power grew from 8.63 per cent in 1980-81 to 20.57 per cent in 1997-98,

marking an average annual compound growth rate of 5.24 per cent, while

that of kerosene oil fell from 15.22 per cent to 10.5 per cent only over

the same period at a decay rate of (-) 2.16 per cent per annum. This in

turn suggests a very weak marginal rate of substitution of electricity for

kerosene oil (or elasticity) of just about (-) 0.40; i.e., one percentage

increase in the share of electricity consumption expenditure could on an

average substitute for (or induce a fall of) 0.4 percentage in the share of

kerosene oil consumption expenditure.  In short, electricity could not

yet make an effective inroad upon the economic life in India in general

to the extent it should have done.

For a more concrete example, let us consider the case of the

connected consumers themselves. The per capita electricity consumption

of the connected domestic customers (that made up about 75 per cent of

the total customers) in India in 1995-96 was 772.32 units at an average

rate of Ps. 95.94 per unit (for 18 State Electricity Boards), thus giving in

general an average per capita electricity consumption expenditure of

Rs. 740. 97 (or, Rs. 61.75 per month) – only 7.04 per cent of the per

capita income (of Rs. 10524.8) of that year. In the case of Kerala State,

the electricity consumption per (electrified) domestic consumer in 1997-
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98 was 953.72 units at an average rate of Ps. 76.96 per unit, that indicates

an average domestic consumption expenditure of Rs. 733.99 (or Rs. 61.66

per month) on electricity. The domestic sector that made up about 75 per

cent of the total customers nearly consumed 50 per cent of the electricity

sold in Kerala in that year. In general, the consumption of electricity per

connected consumer in Kerala in 1997-98 was 1480.71 units at an average

rate of Ps. 123.74 per unit, giving an average electricity consumption

expenditure of Rs. 1832.16 (or, 152.68 per month) – only 15.35 per cent

of the per capita income (of Rs. 11936) of that year. Similarly, as a

substantial share of residential and commercial electricity consumption

goes to serve the basic need of lighting which is fairly unresponsive to

income rather than to more income elastic, luxury end uses, power

demand remains less income elastic also to this extent. Moreover, the

whole edifice of demand analysis crumbles to dust in an encounter with

power cuts and load shedding, that restrict actual consumption to

availability rather than to actual requirement which is the long run

experience of Kerala.

We thus see that the economic relationship demand is hypothesised

to have with (per capita) income and unit price is weak and hence

unwarranted in the case of an underdeveloped power system such as in

India/Kerala. The same is true for the role of the demographic variable

viz., population too in power demand analysis. As annual population

figures are only interpolated ones, they might contain a systematic pattern,

causing residual serial correlation that might not be there in the original

data; using these data thus involves analytical problems. Moreover, since

in a less developed power system, electricity connection remains

inaccessible to a large section of the population48 , number of consumers,

instead of population, must be accepted as a more direct and right

determinant. The growth of demand for power is generally assumed to

be determined by the growth of number of (connected) consumers and
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that of intensity of their power consumption (i.e., electricity consumption

per customer), as also the interaction between these two factors49 .

Till the turn of the Eighties, Kerala had apparently been a power

surplus state, exporting power to neighbouring states. Since the drought

year of 1982-83, unprecedented power shortage has become a part of

life in the state. Recurring drought coupled with inadequate installed

capacity has thus unleashed a reign of power cuts and load shedding,

constraining the actual demand down50 . Reliance on past demand data

for forecasting purposes thus becomes grossly erroneous and highly

questionable. If some measurement of these shortages is possible to be

made, the constrained demand can be adjusted accordingly to arrive at a

probable measure of unsuppressed demand, which in turn can be used

as data base for forecasting, subject to the unit root constraints (unless it

contains any induced pattern). One method is to assume first that when

restrictions are imposed on consumers, their level of consumption is

held at some fraction of their consumption during an earlier base period.

Then the shortfall in supply equal to these percentage restrictions can be

found and inflated by a factor that reflects suppressed growth in demand

since the base period and the impact of unscheduled load shedding.  This

in turn can be used to adjust the suppressed demand data (World Bank

1979: 13). Another method uses as demand inflative factor, the fraction

of customers affected by load shedding during peak period and thus

deprived of chance to contribute to peak period demand. The main

problem with all such methods is the non-availability of accurate data

and information.

4. Conclusion

The results of the present study signifies that the earlier works

both in professional and in academic circles on electricity/energy demand

analysis and forecasting, without accounting for non-stationary,
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integrated, behaviour of the time series they used, must have involved

misleading results of spurious regression and of inconsistent and less

efficient estimates. That these econometric practices lacked analytical

soundness and intellectual integrity is evident in the utter neglect of model

adequacy diagnostic checking, the indispensable primary stage in

significance evaluation of any regression mapping. Just taking for granted

the assumptions underlying a model, without an examination of its

empirical significance, using available techniques, amounts to gross

negligence, if not sheer gloss. At least these two fundamental flaws,

viz., not caring for model adequacy diagnosis and not allowing for non-

stationarity in the time series data, detract the whole value from these

studies. The examples in the first part of our analysis illustrate the

significance of our scepticism on this count.

A third strain in our scepticism about the earlier studies in general

relates to their efforts of correlating the less correlatables. In an

underdeveloped power system like ours, plagued with long-run

constraints of inadequate and unreliable supply, electricity consumption

remains an input too insignificant to our economic life to be analysed in

the framework of some macroeconometric ‘causality’ models, as is

usually done in the context of advanced systems.  The second part of our

analysis in terms of cointegration and Granger-‘causality’ confirms this

at least in the case of Kerala power system. Electricity consumption in

the State, coupled with the usually selected ‘causatives’ of number of

consumers, per capita income and average price, all being I(1) variables,

fails to be explained in a cointegrating space in any combination. All the

linear combinations examined turn out to be still non-stationary. Further

analysis for identifying some temporal lead-lag relationship (Granger-

‘causality’) among them in terms of their annual growth rates, found to

be stationary, again draws blank. These two unusual results are a potent

pointer to the badly constrained electricity consumption in an
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underdeveloped system, devoid of its inherent growth mechanism (even

from the number of customers itself). The general evolution of the

economy may have dragged it up along some of its trend.

Demand forecasting in such contexts becomes highly uncertain.

To the extent that the demand forecast has nothing to do with the capacity

expansion planning on a bounded budget as well as with the actual

materialised capacity additions in the system, the very exercise becomes

futile, except as some routine liturgy. The widening gaps between the

actual consumption and the forecast levels (even with the revised lower

ones of the 15th APS or of the KSEB-State Planning Board), in the last

few years in Kerala prove this point. Accurate demand forecasting is

relevant as well as essential only in a growing system under an efficient

management directed by a government of determined political will. This

notwithstanding, forecasts under such circumstances, however, do serve

a good purpose of quantifying (through the gap between forecast and

the actual) the unsatisfied demand, the extent of the shortage.

All the above results and implications are based on the linearity

assumption. However, ‘economic theory is often non-linear’ (Barnett et

al. 2000: 1). Non-linearities are encountered when, for example, capacity

constraints restrict generation and disequilibria persist due to rationing,

the circumstances very much true for our power system. In the presence

of non-linearity, (of, say, structural breaks) tests most often reject

parameter constancy, as the results in Tables 1 and 2 indicate. In this

paper, however, we have not considered testing for the existence of non-

linearity in the data series; yet it adds to our scepticism about the earlier

studies in that they did not account for possible non-linearity problem

too.

As a corollary to the above implications of our results, it is high

time we questioned the inappropriate, pedantic, practice of linear
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regression mapping for trend extrapolation not only for the unit root

problems, but also when similar results can be generated by means of

much simpler methods, for example, growth rate based projections51 .

Useful short-term projection can be had from simple annual growth rates

(percentage deviation over previous year) of electricity consumption.

The method can be modified by accounting for the effect on consumption

of possible growth of the direct causatives such as number of consumers

and connected load. Below we suggest one of such models:

lnC
t
 = ε

CN
 r

N
 + lnC

t-1

where ε
CN

 = ∆ lnC/∆ ln N is the elasticity of consumption (C) with respect

to number of consumers (N) or consumption intensity factor and r
N
 is

the growth rate of N. The above relation is in fact an identity only52 . The

model can be modified to include the effect of connected load (of

electrical appliances) also by rewriting ε
CN

 as ε
CN

 = ε
CL 

ε
LN

, where ε
CL

 is

the consumption intensity with respect to connected load and ε
LN

 is the

load intensity of the customers. Moreover, the expression resembles the

‘explained’ part of a random walk with drift.

Consumption intensity of the power customers in general in the

State was quite elastic (much more than unity) in normal years. It even

went up to more than 2.5 during the two years of 1966-68 when the

Board became liberal in giving new connections following the

commissioning of the Sabarigiri project, and more than three in 1984-85

and 1988-89 immediately after the ‘crashes’ of 1982-84 and 1986-88.

These years saw great leaps in electricity consumption (the growth rates

being between 20 – 33 per cent over the previous year) of a fast-growing

number of customers. However, as energy export picked up, the

consumption elasticity fell below unity; the ‘informal’ constraints on

internal electricity use, covertly imposed in order to boost export show,

continued till the drought year of 1982-83; growth in new connections
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was also checked during most of these years. Once the export frenzy has

subsided, consumption now grows subject only to the combined

constraints of inadequate capacity and monsoon failure, eased to some

extent by heavy imports.  And the consumption elasticity in the recent

years has been well above 1.5, the growth in new connections being 6 to

8 per cent.

Using these constrained rates (ε
CN

 = 1.5 and r
N
 = 0.07), the supply-

constrained power consumption in the State in 1999-2000 would be 9952

MU over the previous year’s 8960 MU53 . This implies a maximum

demand of 1893 MW at 60 per cent load factor, which, accounting for

18 per cent loss factor (as at present), entails an available capacity of

about 2234 MW. The total installed capacity of the State is reported to

be about 2343 MW only.

In concluding, we recap that the simple is often safe.
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Notes

1 “Everything is not good simply because it is old; no literature
should be treated as unworthy simply because it is new. Great
men accept the one or the other after due examination. [Only] the
fool has his understanding misled by the beliefs of others.”

2 In fact this important stage in regression analysis is entirely
overlooked and skipped in general. It is just assumed that the
residual whiteness assumption is satisfied by the model
considered, without empirically verifying for its non-violation,
except in some ARIMA modelling.

3 Econometric ‘causality’ is a contentious term. Can econometrics
explain ‘causality’ (in the sense the word is generally understood),
instead of mere ‘association’ among variables? For example,
Edward Leamer and others prefer ‘precedence’ to ‘causality’, in
the context of Granger-‘causality’ that explains temporal lead-
lag relationship between two variables. On Granger-‘causality’
Pagan (1989) remarks: ‘…….it was one of the most unfortunate
turnings for econometrics in the last two decades, and it has
probably generated more nonsense results…’ Hence our use of
quotation marks enclosing ‘causality’.

4 A number of computer software packages of energy planning
models are available at present for energy demand forecasts, such
as LEAP (Long range Energy Alternative Planning), BEEAM-
TEESE (Brookhaven Energy Economy Assessment model-TERI
Economy Simulation and Evaluation), MEDEE-S, ELGEM, etc.

5 A sequence u(t) , t ≥ 0, is white noise process if it possesses a
constant spectral density function. Thus a white noise process is
a stationary process which has a zero mean and constant variance
and is uncorrelated over time. It is therefore necessarily second-
order (i.e., covariance-) stationary, and if u

t
  is normally

distributed, it is strictly stationary as well, since in this case higher-
order moments are all functions of the first two. Also see Granger
and Newbold, 1977: 51.
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6 This corresponds to Box-Pierce Q statistic (Box and Pierce 1970),
but with a degrees of freedom correction (Ljung and Box 1978),
and has more powerful small sample properties than the Box-
Pierce Q statisitic.

7 Hendry and Doornik (1999) remark: “…most tests also have some
power to detect other alternatives, so rejecting the null does not
entail accepting the alternative, and in many instances, accepting
the alternative would be a non sequitur” (p.187). “Perhaps the
greatest non sequitur in the history of econometrics is the
assumption that autocorrelated residuals entail autoregressive
errors, as is entailed in ‘correcting serial correlation using
Cochrane-Orcutt’” (p. 131).

8 Remember the solution of a homogeneous first order difference
equation y

t
  = ρy

t-1  
 is given by y

0 
ρt. The time path of the process

converges, persists (in oscillation) or diverges (explodes)
according as the root  | ρ |   is less than, equal to or greater than
unity.

9 The mean of y
t
 is E(y

t
)  = ΣE(u

i
) = 0, variance of y

t
 is var(y

t
) =

Σvar(u
i
) = tσ

u
2,  for i = 1, 2, .., t, and autocovariances for lag k are

cov(y
t 
y

t + k
) =  E{Σu

i
 Σu

i + k 
) = (t – k)σ

u
2,  functions of time.

10 See for references on such modelling, Nelson and Plosser (1982).

11 This is why a random walk with drift can be represented in terms
of a simple forecasting model, where the forecasts (trend  αt)
increase linearly with time and the forecast error variance (tσ

u
2)

increases infinitely.

12 This follows from the classic result of Frisch and Waugh (1933)
that including a time trend in a regression is equivalent to first-
detrending the variables by regressing them individually on time.

13 This is known as Bhargava type formulation for unit root testing
(Bhargava 1986) that can dispense with a number of problems in
interpreting the test results. In the original unit root tests developed
by Dickey (1976), Fuller (1976) and Dickey and Fuller (1979),
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three functional forms of simple autoregression with and without
constant or time trend are considered for testing the null ρ = 1
against the alternative | ρ | < 1:

y
t
  = α + βt + ρy

t-1 
+ u

t
, (1)

    y
t
  = α + ρy

t-1 
+ u

t
, (2)

y
t
  = ρy

t-1 
+ u

t
, (3)

The parameters in the first two functions have different
interpretations under the null and the alternative (Schmidt and
Phillips 1992). In (1), under the unit root null, α and β  represent
coefficients of t and t2 in a quadratic trend, while under the
alternative, they represent the level and the coefficient of  t in a
linear trend. Similarly in (2), under the null hypothesis α represents
the coefficient of t in a linear trend, whereas under the alternative,
there is no trend, and y

t
 is stationary around α /(1 - ρ). Bhargava-

type formulation, which implies that β = 0, if ρ  =1 in (1) and
α = 0 if ρ  =1 in (2), does not suffer from such problems.

14 But also see Dickey and Pantula (1987).

15 A trend or constant is included in these models, since most
economic variables show a trend in line with the general evolution
of the economy.

16 Note that DT is in fact an interaction term, the product of the
dummy variable ( DU ) and trend ( t ).

17 If there are more than two variables, the set of  β   values is called
the cointegrating vector.  In general, if both y

t
 and x

t
 are I(d), then

they are CI(d, b) if u
t
 = y

t
  - βx

t 
 is I(d – b), with b > 0.

18 The DW statistic is given by DW = Σ(u
t
 - u

t-1
)2/Σ u

t 
2 , where the

estimated residual values are used, and the summations are from
2 to n in the numerator and 1 to n in the denominator. If u

t
  is I(1),

the DW statistic will be close to zero, since the numerator of DW
is the sum of squares of (n – 1) white noise terms (as u

t
 = u

t-1
 + e

t
),

and the denominator is the sum of squares of n terms, each of
which, through repeated substitution, can be written as an infinite
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number of white noise terms. Hence the test is to see if CRDW is
significantly greater than zero. If it exceeds the critical value,
then u

t
  is I(0) and y

t
 and x

t 
are cointegrated.

19 Remember the data we use here are the ones actually constrained
by power shortages – power cuts and load shedding. It goes
without saying that reliance on and use of these data for forecasting
purposes just involves high risk of errors of underestimation.

20 As indicated by the high p-values associated with the low
normality test statistic values – thus the residuals are distributed
with statistically small skewness and excess kurtosis.

21 LM test and White (F-) test are not available for the non-linear k-
transformation model; AR(1) correction also is not possible for
this model. And for the quadratic model, White (F-) test could
not be computed due to near singularity of the matrix.

22 There is a reverse possibility also, residual autocorrelation causing
ARCH effect (Engle, Hendry and Trumbull 1985), and this may
be due to the difficulty in interpreting results when several tests
reject together.

23 AR(1) correction is not possible for the non-linear k-
transformation model. Also see foot note 7.

24 It should be pointed out, however, that it may not be appropriate
to consider again DW statistic for the efficacy of the AR(1)
correction; see the note by Kenneth White in his SHAZAM (p.
86).

25 Durbin-h in this case is 0.414, much less than the 5 per cent normal
critical value.

26 It should be noted that the indicated significance is only valid in
the absence of non-stationary regressors, which is not the case
here.

27 Note that all the long-run elasticities implied by the model, if
valid, are much less than unity.
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28 Remember that these autoregressive errors, in the presence of
lagged dependent variable as regressor, leave the OLS estimators
inconsistent.

29  It should be noted that the parameter estimate of the logarithmic
AR(1) model being close to unity and the residuals being white
noise, we have a random walk model with drift. The unit root
tests will also prove this.

30 Note that our findings compare well with those of Nelson and
Kang (1984) who discuss misleading results resulting from
estimating relationships among under-differenced series.

31 Applying unit root (DF) test to the residuals from Model 7,
(logarithmic AR(1) model), the t-statistic obtained is –5.741
against the critical value of –3.607 at one per cent significance
level, that thus rejects the null of unit root in the noise term.
Similarly, for the semi-log trend model (9)  with AR(1) correction
and the short run consumption model (10), the t-statistic estimated
is –5.670 versus the critical value of –3.607 at one per cent level,
(same estimate for both the models, as they are equivalent),
reconfirming the stationarity of the residuals.

32 Nelson and Plosser (1982: 141) state that ‘the tendency of
economic time series to exhibit variation that increases in mean
and dispersion in proportion to absolute level motivates the
transformation to natural logs and the assumption that trends are
linear in the transformed data’.

33 The residuals from the models are strictly white noise for these
lags with levels and with differences. Note that the unit root null
might be rejected for some other lags, since the results of
univariate ADF testing are sensitive to the lag length in the
regression model for the tests. Hence the significance of a choice
of optimum lag length, that is to satisfy the residual whiteness
assumption.

34 This DW-statistic for the level of a variable is not to be confused
with the cointegrating regression Durbin-Watson (CRDW)
statistic of the residuals; see foot note 18.
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35 Chow tests for structural stability carried out on the logarithms
of the series confirm the following breaks: 1983-84 and 1987-88
in consumption; 1979-80 in number of consumers; and 1985-86
in per capita income. However, since the Chow test is meant for
only stationary variables, its results cannot be relied upon in our
case, and they are not reported.

36 The so-called ‘Gulf boom’ of increasing remittances of the non-
resident Keralites from the Gulf has triggered an unprecedented
growth of the housing sector and encouraged an increasing
demand for electricity intensive appliances in Kerala especially
since the mid-seventies. Number of houses in the electrified group
must also have increased (in absolute terms) as a result of the
social security schemes of the government (IRTC and IEI,
Exercises for Integrated Resource Planning for Kerala: End-Use
Analysis – An Empirical Study: Technical Report I – Electricity,
1996, Chap. 3, p.33). Though the serious power shortage situation
has however entailed restrictions on providing new connections
since 1982-83, energy consumption intensity in relation to number
of customers as well as connected load has been on the increase.

37 See the multivariate econometric model  2.

38 The first row (null of r = 0) maximum eigenvalue and trace
statistics are respectively 27.83 and 43.16, and the former is
significant, though marginally, at 5 pe rcent level, but the latter is
not. Dickey, et al. (1991) recommend the maximum eigenvalue
test as more reliable than the trace test especially in small samples.
This then suggests that there exists one cointegrating vector (cv)
of long-run relationship among the four variables, if we disregard
small sample bias. The relationship of interest in our case is that
of electricity consumption (C) with other variables. The estimated
cv of this relationship (with normalised coefficients representing
long-run elasticities) is given by C = 0.734 N – 2.941 AR – 0.474
PCI, where all the variables are in logarithms. In view of the
wrong sign of PCI (as well as the very high elasticity of AR against
actual experiences), we fail to give a consistent economic meaning
to this cv, and conclude against identifying the relationship of
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interest. Any other relationship among the variables implied in
the existence of a cv is of no interest to us now.

39 In Table 8, in the last model of C with N, note that both the statistics
in the second row, Ho: r ≤ 1, are significant at 5 per cent level.
However, since the first row, Ho: r = 0, cannot be rejected, we
cannot consider the second row. That is, if the first (row) statistic
is not significant, then r is selected as zero (Doornik and Hendry
1997: 224-225).

40 Remember that by the Granger Representation Theorem (Granger
1983), if a set of variables are cointegrated, then there exists an
error correction representation (and vice versa).

41 Note the null hypothesis that elctricity consumption (C) growth
rates do not Granger-‘cause’ N growth rates can be rejected at 5
and 10 per cent significance levels respectively for lags 4 and 5,
and the same is so for AR growth rates at 7 per cent level for lag
3. However, in view of the persistence of non-rejection for all
other lags, we cannot consider such isolated results.

42 The results are reported for lags up to 6 for space limitation.

43 For example, in 1995-96, the percentage share of fuels, electricity,
and lubricants consumed in the ASI factory sector of India in the
value of total inputs was 9.56 per cent only and that in value of
products, 7.81 per cent; in Kerala, these were respectively 5.77
and 4.72 per cent only (Government of India 1998a: 85-86).
During the 90s (1991-92 to 1997-98), power and fuel expenses
of the whole manufacturing sector in India remained at about 6
per cent of the net sales and at about 7.5 per cent of the total
production costs (CMIE 1999).

44 The percentage share of the unregistered firms in the
manufacturing sector’s contribution to net domestic product (at
current prices) in India in 1997-98  was 35.4 per cent; in 1970-
71, 1980-81 and 1990-91, it was respectively 46.7, 46.3 and 39.1
per cent.
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45 An apt example of mechanical adoption and use of econometrics
against its grain usual in the academic circles is Pillai (1981)’s
Cobb-Douglas production function approach to Kerala’s hydro-
electric power system, with capital and labor as ‘variable’ inputs.
It is common sense that labor is not at all a variable factor of
production in hydro-electric power generation, it being a part of
sunk capital.

46 The latter (price) equation need not be confused with the usual
supply function; many studies (for example, Halvorsen 1975)
assume electricity supply in this context as fixed. However, the
unique technical characteristic of electricity that it cannot be stored
in its original form and hence must be generated the moment it is
demanded stands to do away with the usual demand-supply
distinction. This also makes the question of identification
irrelevant. The earlier studies in India on electricity demand
analysis have ignored the question of identification, as pointed
out by Dr. Indrani Chakraborty; no reason is provided as to why
the equation estimated as for demand may not be a supply
function. It should however be noted that a distinction between
demand (= supply) and capacity provision is possible here except
in power shortage situations.

47 Government of India, National Accounts Statistics, different
issues.

48 Nearly 50 per cent of the households in Kerala (and nearly 60 per
cent in the rural areas) remain  unelectrified (as per 1991 Census).
This problem also haunts the regressor of per capita State income
that includes the share of the unelectrified households also.

49 See Pillai (1981:  81 – 82); Henderson (1975) uses sectoral output
in the place of number of consumers. Another immediate factor
of influence is connected load, the total of the rating (in kilowatts)
of all the electricity using appliances installed on a consumer’s
premises. This also may be considered along with the relevant
intensity of energy consumption (electricity consumption per
kilowatt (KW) of connected load) and the interaction between
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the two. However, number of customers (N) is more immediate
and direct than connected load (CL) in determining energy
demand, as not only is N in fact the causative of CL, but also a
customer may not use all his electric devices simultaneously or
continuously; there are times, on the other hand, when all  the
consumers together exert demand pressure on the system. There
is yet another significant reason. A growing power system is
expected to become more and more electricity intensive in that
its CL grows faster than N (so that the electricity intensification
factor, i.e., connected load per customer (CL/N), increases over
time). Despite the restrictions imposed on providing new
connections since 1982-83, the domestic, commercial, and LT
industrial consumers in Kerala have behaved in the expected line,
becoming more electricity intensive (in terms of appliances
installations), but the HT-EHT industry and ‘others’ (agriculture,
public services, licensees, etc.) have not. This surprising tendency
of a faster decaying electricity intensity in the State’s HT-EHT
industrial and agricultural sectors has overshadowed the normal
growth in the other sectors and been reflected in the aggregate,
the growth of CL trailing behind that of N.

50 Even during the ‘surplus’ period, it can be seen, the internal
consumption was constrained in order to boost the KSEB’s export
extravaganza.

51 Note that the projections from semi-log (i.e., exponential) trend
extrapolation model and simple and logarithmic AR(1) models
are in fact (constant) growth rate based ones.

52 This follows since r
N
 = ∆lnN. Note that the relation also amounts

to one period (compound) growth expression: C
t
 = C

t-1
(1+r), where

r is the compound growth rate of consumption and (1+r) = exp(r
C
),

where r
C
  = ∆lnC.

53 These rates imply a consumption growth rate of about 11 per
cent; the KSEB anticipates an annual growth rate of 10 per cent
in power consumption at present.
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Table 1. Estimation Results of the Forecast Models – Period : 1957-58 to 1998-99

1. Linear Trend : Consumption = f (Time)

Estimate t-value Adj R2 F-value  DW statistic
Constant -899.54 -3.76 0.895 348.62 0.157

Time 181.02 18.67 Parameter instability : 3.159**
                           Stimulation Error Analysis

TIC BP VP CP
0.099 4.90E-17 0.027 0.973

                 Residual Analysis
Normality (χ2) Skewness Kurtosis SD
3.35 (0.1870) 0.681 3.25 752.21

Autoregression (F) Heteroscedasticity (F)   ARCH (F) RESET (F)
30.03 9.11 12.95 18.38

(0) (0.0006) (0) (0)

2. Quadratic Trend: Consumption = f (Time, Time Squared)

Estimate t-value Adj R2 F-value  DW statistic
Constant 725.61 4.68 0.982 1088.1 0.706

Time -40.595 -2.44 Parameter instability : 2.371 **
Time 2 5.154 13.75

                           Stimulation Error Analysis
TIC BP VP CP

0.041 8.05E-16 0.004 0.996
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
0.631(0.7294) -0.056 3.59 311.11

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
10.94 ++ 1.39 10.70

(0) (0.2548) (0.0002)

3. Semi Long Trend: Consumption = f (Time )

Estimate t-value Adj R2 F-value  DW statistic
Constant 6.082 141.94 0.977 1773.7 0.317

Time 0.073 42.12 Parameter instability :3.437 *
                           Stimulation Error Analysis

TIC BP VP CP
0.0086 2.10E-12 0.0056 0.994

                 Residual Analysis
Normality (χ2) Skewness Kurtosis SD
1.44(0.4864) 0.119 2.12 0.135

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
10.34 10.14 5.69 13.28

(0) (0.0003) (0) (0)
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4. k-kransformation (k=0.5) : Consumption = f (Time)

Estimate t-value Adj R2 F-value  DW statistic
Constant 7.26 3.67 0.973 1479.5 0.487

Time 1.937 31.53
  Stimulation Error Analysis

TIC BP VP CP
0.05 0.017 0.0074 0.976

                 Residual Analysis
Normality (χ2) Skewness Kurtosis SD
2.08(0.3541) -0.29 3.92 377.14

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
+ + 2.16 +

(0.0845)

5. First-order Auto-regressive: C
t
 =f (One period lagged C

t
)

Estimate t-value Adj R2 F-value  DW statistic
Constant 15.296 0.22 0.987 3087.1 1.837

C
 t-1

1.068 55.56 Durbin h:  0.533
Parameter instability : 1.149*

  Stimulation Error Analysis
TIC BP VP CP

0.034 1.33E-14 0.003 0.997
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
17.50(0.0002) -0.387 6.11 260.94

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
7.25 10.82 2.78 0.076

(0.001) (0.0002) (0.0355) (0.9132

6. Logarithmic Auto-regressive: In C
t 
= f (In C

t-1
)

Estimate t-value Adj R2 F-value  DW statistic
Constant 0.231 2.24 0.993 5327.46 1.873

InC
 t-1

0.9799 72.99 Durbin h:  0.414
Parameter instability : 0.216

  Stimulation Error Analysis
TIC BP VP CP

0.005 9.99E-14 0.002 0.998
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
1.37(0.5039) 0.411 2.64 0.075

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
1.45 0.215 0.336 0.369

(0.2322) (0.8073) (0.8872) (0.6936)
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7. Linear Trend with AR (1) correction : Consumption = f (Time)
Estimate t-value Adj R2 F-value DW statistic

Constant -1983.66 -0.19 0.987 1510.03 1.810
Time -100.570 -0.25 Parameter instability : 1.545 *

AR (1) 1.045 16.40
                           Stimulation Error Analysis

TIC BP VP CP
0.034 4.95E-11 0.003 0.997

                 Residual Analysis
Normality (χ2) Skewness Kurtosis SD
14.81(0.006) -0.334 5.87 260.4

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
6.95 8.78 3.64 3.35

(0.0002) (0.007) (0.0109) (0.0457)

8. Quadratic Trend with AR (1) correction: = f (Time, Time  Squared)

Estimate t-value Adj R2 F-value  DW statistic
Constant 1413.96 1.80 0.989 1162.47 1.625

Time -110.12 -1.55 Parameter instability : 2.185 *
Time 2 6.65 4.72
AR (1) 0.709 4.99

                           Stimulation Error Analysis
TIC BP VP CP

0.031 5.60E-13 0.003 0.997
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
11.34(0.0034) -0.481 5.39 239.37

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
5.76 ++ 4.99 3.67

(0.0007) (0.0019) (0.0350)

9. Semi-long Trend wiht AR (1) correction : In C = f (time)

Estimate t-value Adj R2 F-value DW statistic
Constant 6.25 39.54 0.993 2927.36 1.766

Time 0.068 12.82 Parameter instability :0.810
AR (1) 0.798 9.540

                           Stimulation Error Analysis
TIC BP VP CP

0.004 1.13E-13 0.002 0.998
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
0.066(0.9674) 0.095 3.05 0.07

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
1.36 0.363 0.202 0.091

(0.2655) (0.6977) (0.9591) (0.9132)
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10. Partial Adjustment (Short-run Growth Rate) Model : In C
t
 = f (In C

t-1,
 Time)

Estimate t-value Adj R2 F-value DW statistic
Constant 1.31 2.61 0.993 2927.36 1.766

Time 0.0136 2.20                Durbin h : 0.887
In C

t-1
0.798 9.54 Parameter instability :0.810

                           Stimulation Error Analysis
TIC BP VP CP

0.004 1.13E-13 0.002 0.998
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
0.066(0.9674) 0.095 3.05 0.07

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
1.36 1.77 0.202 2.36

(0.2655) (0.1562) (0.9591) (0.1082)

Note:

1. *’ and ‘**’ indicate statistical significance at 5 and 1 per cent respectively.

2. + = not available in non-linear least squares

3. ++ = near singular matrix

4. Figures in brackets are the corresponding p-values.

5. C =  Electricity Consumption in the State (Million Units)

6. Adj. R-squared = Adjusted R-squared;

7. TIC = Theil inequality coefficient

8.  ln = Natural log

9. BP = Bias proportion; VP = Variance proportion

10. CP = Covariance proportion

11. AR(1) = Estimate of first order auto-regression coefficient

12. Parameter instability = Joint (F-) test statistic for parameter constancy

13. ARCH (F) = Autoregressive Conditional Heteroscedasticity (F) statistic (5 lags)

14. RESET (F) = Regression Specification Test (F) statistic
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Model 1. C
t
 = (N

t
, PCl

t
, AR

t
)

Estimate t-value Adj R2 F-value  DW statistic
Constant -129.66 -0.23 0.993 1686.1 1.306

N
t

1.175 18.53 Parameter instability : 1.591*
PCl

t
1.127 4.23

AR
t

-30.53 -2.30
                           Stimulation Error Analysis

TIC BP VP CP
0.024 1.64E-14 0.002 0.998

                 Residual Analysis
Normality (χ2) Skewness Kurtosis SD
14.19 (0.0008) -1.161 4.83 191.94

Autoregression (F) Heteroscedasticity (F)   ARCH (F) RESET (F)
3.08 2.64 0.443 3.44

(0.0233) (0.0340) (08145) (0.0434)

Table 2. Multi-variable Econometric Models –

Period:  1960-61 to 1998-99

.
Model 2.  In C

t
 =f (In N

t
, In PCl 

t
,  InAR

t
)

Estimate t-value Adj R2 F-value  DW statistic
Constant 0.237 0.27 0.990 1266.21 0.635

In N
t

0.683 29.61 Parameter instability : 2.501*
In PCl

t
0.539 4.71

In AR
t

-0.398 -3.26
                           Stimulation Error Analysis

TIC BP VP CP
0.005 1.03E-13 0.002 0.998

                 Residual Analysis
Normality (χ2) Skewness Kurtosis SD
1.006 (0.6048) -0.048 2.22 0.077

Autoregression (F) Heteroscedasticity (F)   ARCH (F) RESET (F)
6.08 0.695 0.791 6.95

(0.0005) (0.6552) (0.5652) (0.0029)
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.
Model 3.  C

t
 =f (N

t
,  PCl 

t
,  AR

t
, Time)

Estimate t-value Adj R2 F-value  DW statistic
Constant -1261.12 -1.92 0.994 1505.83 1.609

N
t

0.876 7.12 Parameter instability : 1.837*
 PCl

t
1.567 5.37

AR
t

-18.287 -1.41
Time 30.180 2.76

                           Stimulation Error Analysis
TIC BP VP CP

0.022 7.54E-15 0.001 0.999
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
232.32 (0.0) -1.22 5.91 173.47

Autoregression (F) Heteroscedasticity (F)   ARCH (F) RESET (F)
3.44 3.03 1.10 0.457

(0.0147) (0.0129) (0.3821) (0.6373)

.
Model 4. In C

t
 =f (InN

t
, In  PCl 

t
,  In AR

t
, Time)

Estimate t-value Adj R2 F-value  DW statistic
Constant -4.52 -1.73 0.991 1023.51 0.748

In N
t

1.040 5.53 Parameter instability : 2.155**
In PCl

t
0.916 4.07

In AR
t

-0.295 -2.29
Time -0.040 -1.92

                           Stimulation Error Analysis
TIC BP VP CP

0.005 2.56E-13 0.002 0.998
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
0.652 (0.7219) -0.165 2.46 0.073

Autoregression (F) Heteroscedasticity (F)   ARCH (F) RESET (F)
4.88 0.756 1.05 7.76

(0.0023) (0.6430) (0.4115) (0.0017)
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Model 5. In C
t
 =f (In N

t
, In PCl 

t
,  In AR

t
  In C

t
 
-1
)

Estimate t-value Adj R2 F-value  DW statistic
Constant -0.004 -0.01 0.994 1476.77 1.37

 In N
t

0.301 3.45                Durbin h: 2.788
In PCl

t
0.300 2.83 Parameter instability : 1.445

In AR
t

-0.217 -2.05
In C

t-1
0.537 4.50

                           Stimulation Error Analysis
TIC BP VP CP

0.004 3.69E-13 0.001 0.999
                 Residual Analysis

Normality (χ2) Skewness Kurtosis SD
0.1.65 (0.4379) -0.110 3.26 0.060

Autoregression (F) Heterosced asticity (F)   ARCH (F) RESET (F)
2.77 0.461 0.0004 5.92

(0.0774) (0.8718) (0.9833) (0.0206)

Note:

1.  *’ and ‘**’ indicate statistical significance at 5 and 1 per cent respectively.

2. C =  Electricity Consumption in the State (Million Units)

3. N = Number of Electricity Consumers

4. PCI = Per Capita State Income (at 1980-81 prices)

5. AR = Average Price (Revenue) (at 1981-82 prices)

6. Figures in brackets are the corresponding p-values.
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Table 3.  Residual Analysis

 (Variables in logarithms)

C  N AR PCI

1.  ADF unit root tests
   - Levels (Model 2)

Standard Deviation 0.064 0.024 0.088 0.029
Skewness 0.054 0.343 0.427 -0.005
Excess kurtosis 0.292 0.823 -0.298 0.345
Normality (χ2) p-value 0.4146 0.1323 0.4566 0.2589
Autocorln LM (F) p-value 0.7832 0.3342 0.4446 0.5325
Heteroscedasticity
     White (F) p-value 0.3250 0.4613 0.4303 0.2938
      ARCH (F) p-value 0.8302 0.1887 0.3847 0.4882

2. ADF unit root tests
- Differences (Model 1)
Standard Deviation 0.072 0.027 0.096 0.030
Skewness 0.518 0.598 0.433 -0.112
Excess kurtosis 0.419 0.271 -0.194 0.070
Normality (χ2)  p-value 0.2827 0.2528 0.4631 0.6039
Autocorln LM (F) p-value 0.6162 0.4216 0.1230 0.2229
Heteroscedasticity
      White (F) p-value 0.7554 0.2437 0.9030 0.7851

              ARCH (F) p-value 0.3148 0.3189 0.8155 0.7904

3. VAR  Model (for 2 lags)
Skewness -0.026 0.317 1.505 -1.122
Excess kurtosis 0.138 1.218 -0.2440 0.053
Normality (χ2) p-value 0.8099 0.4368 0.4243 0.1075
Autocorln LM (F) p-value 0.3787 0.0892 0.2167 0.8150
Heteroscedasticity
      White (F) p-value 0.3819 0.3996 0.3350 0.9856
      ARCH (F) p-value 0.9169 0.4505 0.1594 0.4559

Vector normality χ2 = 5.189 (0.1744)
Vector autocorrelation F = 1.315 (0.1744)

Vector heteroscedasticity F = 0.476 (0.9991)

Note:  Autocorln = Autocorrelation

          Figures in brackets are the corresponding p-values.
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Table 4. Results of Unit Root Tests

  DW -Statistic             ADF test statistics
for    Model 1 Model 2

Variables Variables (with (with Inference
(in log) (in log) constant) trend+constant

I  Levels
1. C 0.0176 -2.146 -2.554 DS with drift

 (0.632)
2. N 0.0088 -2.825 -0.381 DS with drift

 (0.632)
3. AR 0.919 -2.363 -2.603 DS with drift

(0.632)
   4. PCI 0.0378 1.514 -0.038 DS with drift

(0.659)
II First
  Differences

1. C 1.727 -5.614** -6.042** Stationary
(0.645)

2. N 0.862 -3.459* -4.957** Stationary
(0.645)

    3. AR 2.199 -7.349** -7.244** Stationary
(0.645)

4. PCI 1.292 -3.029* -3.684* Stationary
(0.673)

Note:

1. ‘*’ and ‘**’ indicate statistical significance at 5 and 1per cent respectively.
2. Inference for the levels is based on Model 2 and for the differences on

Model 1.
3. C =  Electricity Consumption in the State (Million Units)
4. N = Number of Electricity Consumers
5. PCI = Per Capita State Income (at 1980-81 prices)
6. AR = Average Price (Revenue) (at 1981-82 prices)
7. Figures in brackets are approximate critical values at 5 per cent

significance level (Sargan and Bhargava 1983:Table 1).
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Table 5. Perron's Unit Root Test in the Presence of Structural Break
1. Consumption (C

t
) Break year: 1983-84; Lags 2; TB/T = 0.61.

Trend (t) DU DT C
t-1

Critical

Estimate 0.0173 -0.197 0.002 -0.257 value 10%
t-value 1.374 -0.472 0.391 -1.837 -3.95

Residual Analysis

SD Skewness Kurtosis               Normality (χ2)
0.063 0.247 3.216 1.512    (0.4695)

Autoregression (F) Heteroscedasticity (F) ARCH  (F) RESET (F)
0.347 (0.7097) 1.487  (0.2123)   0.031(0.8618)  0.010 (0.9206)

1. Consumption (C
t
) Break year: 1987-88; Lag  1; TB/T = 0.71.

Trend (t) DU DT C
t-1

Critical

Estimate 0.016 -0.011 5.20E-05 -0.223 value 10%
t-value 1.711 -0.018 0.008 -2.022 -3.86

Residual Analysis

SD Skewness Kurtosis               Normality (χ2)
0.070 -0.043 3.159 1.223    (0.5427)

Autoregression (F) Heteroscedasticity (F) ARCH  (F) RESET (F)
2.385 (0.1083) 0.775  (0.6407)   0.134(0.7172)  0.278 (0.6017)

3. Consumption (C
t
) Break year: 1996-97; Lag  1; TB/T = 0.95.

Trend (t) DU DT C
t-1

Critical

Estimate 0.014 -8.792 0.090 -0.208 value 10%
t-value 2.011 -1.742 1.738 -2.191 -3.46

Residual Analysis

SD Skewness Kurtosis               Normality (χ2)
0.067 0.081 3.554 2.954    (0.2283)

Autoregression (F) Heteroscedasticity (F) ARCH  (F) RESET (F)
1.637 (0.2104) 1.066  (0.4211)   0.802(0.3771)  0.315 (0.5783)
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4. No. of consumers (N
t
) Break year: 1979-80; Lags  5; TB/T = 0.50.

Trend (t) DU DT C
t-1

Critical

Estimate 0.021 0.708 -0.008 -0.222 value 10%
t-value 1.944 2.653 -2.482 -2.411 -3.96

Residual Analysis

SD Skewness Kurtosis               Normality (χ2)
0.019 0.238 3.977 5.111    (0.0776)

Autoregression (F) Heteroscedasticity (F) ARCH  (F) RESET (F)
1.623 (0.2183) 0.431  (0.9312)   0.272(0.6069)  0.119 (0.7331)

5. Per capita income (PCl
t
) Break year: 1985-86; Lags 3; TB/T = 0.66.

Trend (t) DU DT C
t-1

Critical

Estimate 0.0024 -1.901 0.022 -0.467 value 10%
t-value 1.64 -3.52 3.60 -3.209 -3.86

Residual Analysis

SD Skewness Kurtosis               Normality (χ2)
0.022 -0.821 3.664 4.45    (0.1079)

Autoregression (F) Heteroscedasticity (F) ARCH  (F) RESET (F)
0.116 (0.8909) 0.375  (0.9555)   0.238(0.6299)  1.893 (0.1806)

Note:

1. Critical values are from Perron (1989 Table VI B).
2. TB/T = ratio of pre-break sample size to total sample size.
3. C =  Electricity Consumption in the State (Million Units)
4. N = Number of Electricity Consumers
5. PCI = Per Capita State Income (at 1980-81 prices)
6. Figures in brackets are the corresponding p-values.
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Table 6.  Cointegration Analysis

Cointegration CRDW                 Augmented Engle-Granger Test
of C with Statistic Lag ADF Critical Value

Statistic (10 %)

1. N, PCI, AR 0.635 0 -2.909 -4.034
(0.641) 1 -2.381 -4.040

2 -2.497 -4.046
2. N, PCI 0.618 0 -2.926 -3.618

(0.661) 1 -2.910 -3.623
2 -2.785 -3.627

3. N, AR 0.448 0 -1.903 -3.606
(0.661) 1 -1.678 -3.610

2 -1.503 -3.614
4. AR, PCI 0.109 0 -1.801 -3.618

(0.661) 1 -1.256 -3.623
2 -1.697 -3.627

5. PCI 0.072 0 -1.738 -3.157
(0.681) 1 -1.125 -3.160

2 -1.656 -3.164
6. AR 0.072 0 -1.360 -3.149

(0.681) 1 -1.149 -3.152
2 -1.305 -3.154

7. N 0.483 0 -2.133 -3.149
(0.681) 1 -2.421 -3.152

2 -1.834 -3.154

Note:

1. All variables are in logarithms.
2. CRDW = Cointegrating  Regression  Durbin-Watson statistic; figures in

brackets are approximate critical values at 5 % significance level (Sargan
and Bhargava 1983: Table 1).

3. C =  Electricity Consumption in the State (Million Units)
4. N = Number of Electricity Consumers
5. PCI = Per Capita State Income (at 1980-81 prices)
6. AR = Average Price (Revenue) (at 1981-82 prices)
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Table 7. Johansen and Juselius (J J) Cointegration Tests

1.   Variables (in log): C, N, AR, PCI.
    Eigenvalues: 0.529, 0.226, 0.147, 3.8E-06

Null             Maximum Eigenvalue Test                    Trace Test
Ho : Alternative Statistic+ 95 % CV Alternative Statistic+ 95 % CV

r = 0 r = 1 21.81 27.1   r ≥ 1 33.83 47.2
r ≤ 1 r = 2 7.42 21.0 r ≥ 2 12.01 29.7
r ≤ 2 r = 3 4.60 14.1 r ≥ 3 4.60 15.4
r ≤ 3 r = 4 0.0001 3.8 r ≥ 4 0.0001 3.8

2. Variables (in log): C, N, PCI.
    Eigenvalues: 0.223, 0.174, 0.0015

Null             Maximum Eigenvalue Test                    Trace Test
Ho : Alternative Statistic+ 95 % CV Alternative Statistic+ 95 % CV

r = 0 r = 1 7.83 21.0    r ≥ 1 13.80 29.7
r ≤ 1 r = 2 5.92 14.1 r ≥ 2 5.96 15.4
r ≤ 2 r = 3 0.046 3.8 r ≥ 3 0.046 3.8

3. Variables (in log): C, AR, PCI.
    Eigenvalues: 0.399, 0.137, 2.79E-07

Null             Maximum Eigenvalue Test                    Trace Test
Ho : Alternative Statistic+ 95 % CV Alternative Statistic+ 95 % CV

r = 0 r = 1 15.83 21.0    r ≥ 1 20.40 29.7
r ≤ 1 r = 2 4.57 14.1 r ≥ 2 4.57 15.4
r ≤ 2 r = 3 8.6E-06 3.8 r ≥ 3 8.6E-06 3.8

4. Variables (in log): C, N, AR.
    Eigenvalues: 0.351, 0.172, 0.068.

Null             Maximum Eigenvalue Test                    Trace Test
Ho : Alternative Statistic+ 95 % CV Alternative Statistic+ 95 % CV

r = 0 r = 1 13.40 21.0    r ≥ 1 21.44 29.7
r ≤ 1 r = 2 5.86 14.1 r ≥ 2 8.04 15.4
r ≤ 2 r = 3 2.18 3.8 r ≥ 3 2.18 3.8

5. Variables (in log): C, AR.
    Eigenvalues: 0.301, 0.026.

Null             Maximum Eigenvalue Test                    Trace Test
Ho : Alternative Statistic+ 95 % CV Alternative Statistic+ 95 % CV

r = 0 r = 1 11.83 14.1    r ≥ 1 12.69 15.4
r ≤ 1 r = 2 0.85 3.8 r ≥ 2 0.85 3.8
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6. Variables (in log): C, PCI.
    Eigenvalues: 0.145, 9.74E-04

7. Variables (in log): C, N.
    Eigenvalues: 0.169, 0.116

Null             Maximum Eigenvalue Test                    Trace Test
Ho : Alternative Statistic+ 95 % CV Alternative Statistic+ 95 % CV

r = 0 r = 1 5.18 14.1    r ≥ 1 5.21 15.4
r ≤ 1 r = 2 0.032 3.8 r ≥ 2 0.032 3.8

Note:  +  = Test statistics are with small sample correction.
          *  =  Significant at 5 % level;  CV = Critical value.

Null             Maximum Eigenvalue Test                    Trace Test

Ho : Alternative Statistic+ 95 % CV Alternative Statistic+ 95 % CV

r = 0 r = 1 6.11 14.1    r ≥ 1 10.17 15.4
r ≤ 1 r = 2 4.07* 3.8 r ≥ 2 4.07* 3.8
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Table 8.  Pair-wise Granger Non-’Causality’ Tests

Null Hypothesis p-values

1. r (C) is not Granger-’caused’ by

Lags r(N) r(PCI) r(AR)

1 0.975 0.650 0.743
2 0.631 0.939 0.166

3 0.990 0.934 0.350

4 0.962 0.888 0.323
5 0.967 0.864 0.417

6 0.984 0.349 0.577

2. r(C) does not Granger-’cause’

Lags r(N) r(PCI) r(AR)

1 0.190 0.391 0.234

2 0.270 0.414 0.165
3 0.289 0.803 0.068

4 0.049 0.716 0.158
5 0.096 0.461 0.233

6 0.322 0.154 0.418

Note: r refers to growth rates (i.e., first differences  of logarithmic

series)
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APPENDIX

1. Unit Root Tests

We have seen that the decision as to whether to difference or to
detrend a time series before proceeding with further analysis depends
upon whether the series  is DSP or TSP. This in turn depends, as we
know, upon whether the root of the series  ρ  = 1 or  | ρ | < 1. Hence the
significance of unit root tests.

Consider the following model:

y
t
 = α + βt + ρ y

t-1 
+ u

t 
, (1)

where u
t 
is white noise. We consider the following possibilities:

1.  When  β ≠ 0,   | ρ | < 1, y
t 
 has a linear trend and hence is a trend-

stationary series.
2.  When β  = 0, then  y

t
 = α + ρ y

t-1 
+ u

t 
. (2)

Here we have two cases:

i) if  | ρ | < 1, y
t  
is a stationary series;

ii) if   ρ  = 1, y
t  
is a difference-stationary series with a drift term.

3.  When α = β = 0, then y
t
 = ρ  y

t-1 
+ u

t 
, (3)

The two cases here are:

i) if  | ρ | < 1, y
t  
is  stationary;

ii) if   ρ  = 1, y
t  
is a difference-stationary series without  drift.

Now subtracting y
t-1

 from (3)

∆ y
t
 = γ y

t-1 
+ u

t 
, (3.b)

where γ = (ρ -1). Now, testing the null hypothesis Ho: γ = 0, in the usual
way is equivalent to testing Ho: ρ  = 1. Similarly, (1) and (2) can be
rewritten as

∆ y
t
 = α + βt + γ y

t-1 
+ u

t 
, (1.b)

∆ y
t
 = α + γ y

t-1 
+ u

t 
. (2.b)

Now, in order to find out whether a series  y
t  
has unit root (y

t
 is a
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non-stationary, integrated, process), run the regression (3) and find out
if ρ = 1 statistically, against the one-sided alternative | ρ | < 1, or,
equivalently, estimate (3.b) and find out if  γ = 0, on the basis of e.g., the
t-statistic. Dickey and Fuller (1979), however, show that this statistic
does not follow Student’s t-distribution, even in the limit as the sample
size increases infinitely.  The distribution of this statistic is known as
(Dickey-Fuller) τ (tau) statistic, to distinguish it from the conventional
t-statistic, whose critical values have been tabulated by Dickey and Fuller,
and later on extended to a much wider range of sample sizes by
MacKinnon (1990), both through Monte Carlo simulations. The
numerator of this statistic is skewed to the right, being a χ2 (1) minus its
expectation. Since Prob[χ2(1) ≤ 1] ≈ 0.70, the majority of this statistic
outcomes are negative. If the estimated τ–value is sufficiently more
negative (i.e., less) than the critical value at the chosen significance level,
we reject the null of unit root and accept the hypothesis of stationarity.
This test is known as Dickey-Fuller (DF) unit root test.

In deriving the asymptotic distributions, Dickey and Fuller (1979,
1981) assumed that the errors u

t
 were  iid(0,σ2 ). However, the limiting

distributions obtained by them cease to be appropriate when the errors
are non-orthogonal (i.e., serially correlated). Dickey and Fuller (1979)
and Said and Dickey (1984) modified the DF test by means of AR
correction. The new augmented Dickey-Fuller test (ADF) is carried out
by estimating an autoregression of (y

t
 or)  ∆ y

t
 on its own lags and y

t-1

using OLS:

  p
 y

t
 = ρy

t-1 
  + Σ β

i
  ∆ y

t-i 
+ u

t 
,

  i=1

or

    p

∆ y
t
 = γy

t-1 
  + Σ β

i
  ∆ y

t-i 
+ u

t 
,

    i=1 (4)

When γ = 0, ρ  = 1. The (t-) test statistic for the unit root null follows the

same DF distribution (t –statistic) as above, so that the same critical

values can be used.
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Nelson-Plosser Test for TSP vs. DSP

Nelson-Plosser (1982) approach to unit root testing was a simple
method of model selection between TSP (y

t
 = α + βt + u

t
) and DSP (∆y

t

= α + u
t
) models (where u

t 
is stationary). However, they approached it as

a test for a nested hypothesis. To test the hypothesis that a time series
belongs to DSP against the alternative that it belongs to TSP, they
employed ADF unit root test, starting with the TSP model with first-
order autocorrelation in errors:

y
t
 = α + βt 

 
+ u

t 
; u

t
 = ρ u

t-1 
+e

t 
,        (5)

(a Bhargava (1986)-type formulation, in which the linear or quadratic
trend problem, discussed above, does not arise).

The nested model is:

y
t
 = α + βt 

 
+ ρ [y

t -1 
 - α - β(t – 1)] 

 
+ e

t

  = δ
0
 + δ

1
t  + ρ y

t-1 
+  e

t 
,        (6)

where e
t 
is iid(0, σ2) and δ

0
 = α(1 - ρ) + ρβ and  δ

1 
= β (1 - ρ). They

included (in (6)) additional regressors  ∆y
t-i 

 to correct the possible serial
correlation in the errors, and tested the unit root null Ho: ρ = 1 and δ

1 
 =

0. (Remember that the value of the constant δ
0
 will not affect the

asymptotic properties of the OLS estimators of ρ and δ
1
, if the regression

includes time as a regressor (see Frisch and Waugh 1933.) In the above
testing procedure, if the unit root null is rejected, y

t
 belongs to TSP;

otherwise, y
t
 belongs to DSP. They found that 13 of the 14 US

macroeconomic time series belonged to DSP.

Other Unit Root Tests

We have seen that significant MA errors require a large  number
of lagged ∆y

t
 terms as regressors in the ADF test model for AR correction.

Since one effective observation is lost for each extra lagged term included,
the power of the ADF test is adversely affected. Phillips and Perron’s
(1988) non-parametric unit root test (PP test) is valid even if the errors
are serially correlated and heteroscedastic. However, this test has serious
size distortions in finite samples when the data generating process (DGP)
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has significant negative autocorrelations in first differences (Phillips and
Perron 1988; Schwert 1989;  De Jong et al. 1992). However, Perron and
Ng (1996) suggest some useful modifications of the PP test that solve

this problem.

There is a voluminous literature on the theory and practice of unit
root tests, as  a large number of testing procedures have mushroomed
ever since the Nelson-Plosser investigation. See for formal reviews: Fuller
(1985), Perron (1988), and Diebold and Nerlove (1990); and for simple
expository reviews: Dickey, et al. (1986), and Dolado et al. (1990). With
Sims (1988), a Bayesian approach to unit roots testing also has drawn
much attention; also see De Jong and Whiteman (1991 a, b), Sims and
Uhlig (1991), and Koop (1992). It is interesting to note that there has
followed a fierce interchange between Phillips (1991 a, b) and some
Bayesian critics, Volume 6 (October – December 1991) of The Journal
of Applied Econometrics being fully devoted to this debate.

Double Unit Roots Testing

The unit root test procedure we discussed above has been based
on the assumption that the series y

t
 contains at most one unit root, i.e., y

t

~ I(1). If the unit root null is not rejected, it may be necessary to find out
whether the series contains a second unit root, i.e., whether y

t
 is I(2).

Remember, I(2) implies that the series be differenced twice to make it
stationary. The presence of a second unit root may be tested by estimating
the regression of ∆2y

t
 on a constant, ∆y

t-1
, and the lagged values of ∆2y

t
,

and comparing the ‘t-ratio’ of the coefficient of ∆y
t-1

 with the Dickey-
Fuller critical values. Alternatively, the presence of two unit roots may
be tested jointly by estimating the regression of ∆2y

t
 on y

t-1
, ∆y

t-1
,  and

the lagged values of  ∆2y
t
, and computing the usual F-statistic for testing

the joint significance of y
t-1

 and ∆y
t-1

, using the critical values given as
Φ

1
(2) by Hasza and Fuller (1979).

However, the first of the above procedures using DF critical values
is not justified theoretically, as DF type unit root tests are based on the
assumption of at most  one unit root. If, in fact, there are more than one
unit root, the empirical size of such tests is greater than the nominal size,
so that the probability of finding any unit root is reduced. Dickey and
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Pantula (1987) suggest an alternative sequence of tests in this connection.
To test the null hypothesis of unit roots against the alternative of one,
estimate the regression of ∆2y

t
 on a constant and ∆y

t-1
, and then compare

the ‘t-value’ of the coefficient of ∆y
t-1

 with the  τµ tables in Fuller (1976).
If the null is rejected, then we test the null hypothesis of exactly one unit
root against the alternative of none by estimating the regression of ∆2y

t

on a constant, y
t-1

,  ∆y
t-1

, and comparing the ‘t-ratio’ of the coefficient of

y
t-1

 with the τµ  distribution.

2.  Cointegration

In view of spurious regression with non-stationary variables, the
usual conventional time series (Box-Jenkins) analysis of proceeding with
suitably differenced, stationary, variables has gained much attraction.
However, soon this temptation and trend fell under fire; solving the non-
stationarity problem via differencing was equated to ‘throwing the baby
out with the bath water’, because differencing results in ‘valuable long-
run information being lost’. Most of the economic relationships are stated
in theory as long-term relationships between variables in their levels,
not in their differences. We need to conserve and utilise in analysis this
long-run information contained in the level variables, and at the same
time, we have to be on the watch for spurious regression of integrated
variables. Both these seemingly irreconcilable objectives could be
achieved by means of cointegration mechanism.

In short, if, in a regression relationship between y
t
 and x

t
, one of

them is an integrated (stochastic) process (and the other deterministic),
we have a case of spurious regression; if both variables are deterministic,
the regression results are valid; but if both the variables are integrated
processes, then the regression is spurious, unless the variables are
cointegrated.

Phillips (1986: 321) shows that the usual least squares theory of
stationary processes actually holds when the limiting covariance matrix
of the model (y

t
, x

t
) is singular. In this case there exists a linear relationship

between y
t
 and x

t
 such that the least squares coefficient estimator is

consistent. This singularity is in fact a necessary condition for (y
t
, x

t
) to

be cointegrtaed.
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The concept of cointegration was introduced by Granger (1981)
and Engle and Granger (1987), and is used as a statistical property to
describe the long-run behaviour of economic time series.

We have explained earlier that a variable is integrated if it requires
differencing to make it stationary. If the (non-stationary) series needs to
be differenced d times to be stationary, then the series is said to be I(d).
If two series y

t
 and x

t
 both are I(1), then in general, any linear combination

of them will also be I(1); for example, data on income and consumption
over a long period exhibit strong upward trends, and their difference
(saving) also shows an upward trend. However, an important property
of I(1) variables is that there can be some linear combinations of them
that are in fact I(0), i.e., stationary. Thus, a set of integrated time series is
cointegrated, if some linear combinations those (non-stationary) series
is stationary.

Let us define u
t
 as:

 u
t
 = y

t
  - βx

t 
,       (7)

where both y
t
  and x

t
 are I(1). If u

t
 is I(0), then y

t
 and x

t
 are said to be

cointegrated, denoted by CI(1, 1). Since both the variables are I(1), they
are dominated by ‘long wave’ components, i.e., they are on the same
wave length. But u

t
, being I(0), does not have these ‘long wave’

components as these ‘trends’ in y
t
  and x

t
 cancel out to produce stationary,

I(0), u
t
 (see Griffiths, et al. 1993: 700-702). β is called the constant of

cointegration. (If there are more than two variables, the set of  values is
called the cointegrating  vector.) In general, if both y

t
 and x

t
 are I(d),

then they are CI(d, b) if u
t
 = y

t
  - βx

t 
 is I(d – b), with b > 0.

Thus, if two variables are integrated of the same order (having the
same ‘wave length’), they can be cointegrated.  In this light, the regression
of these two variables, y

t
  =  βx

t
 + u

t
 makes sense (is not spurious),

because the variables do not tend to drift apart from each other (i.e., they
move together) over time. This then implies that there is a long-run
equilibrium relationship between them.

A long run equilibrium is defined (e.g., in a bivariate case) by the
relationship: y

t
  = βx

t 
or  y

t
  - βx

t 
 = 0. Thus u

t
 given above (7) measures

the extent to which the system (y
t
, x

t
) is out of equilibrium and is therefore
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called the ‘equilibrium error’ (Griffiths, et al. 1993: 701). Hence if both
the variables are I(1), then the equilibrium error u

t
 will be I(0) and it will

rarely drift away from long run equilibrium, say, zero, if it has zero mean,
moving closely around (often crossing) the zero mean. These ‘crossings’,
called ‘mean-reverting’ imply that equilibrium will occasionally occur
(at least to a close approximation). If, on the other hand, the variables y

t

and  x
t
 are not cointegrated, such that u

t
 ~ I(1), it (equilibrium error) will

fluctuate widely with very rare zero-mean crossings, resulting in long-

run disequilibrium (Mills 1990: 271).

Cointegration Tests

We have found that a time series is integrated, if it requires
differencing to make it stationary, and a set of integrated series is
cointegrated, if some linear combination of those non-stationary series
is stationary. Thus, given two variables y

t
 and x

t
, if they are indeed I(1)

processes, verified through some unit root tests, a simple method of testing
whether they are cointegrated is to estimate the ‘cointegrating regression’:

y
t
  = α + βx

t
 + u

t
 ,                      (8)

and then test whether the residual u
t
 is I(0) or not.

Such residual-based procedures were the earliest cointegration
tests, and Engle and Granger (1987) discuss two such simple tests of the
implied null hypothesis that y

t
 and x

t
 are not cointegrated, [i.e., u

t
 is

I(1)]. The first test is based on the DW statistic for (8) and tests, on the
null that u

t
 is I(1), whether DW is significantly greater than zero using

the critical values provided by Sargan and Bhargava (1983). Engle and
Granger (1987), however, prefer the second test of using the t-ratio on
u

t-1
 from the regression of ∆u

t
 on u

t-1
  and lagged values of  ∆u

t
, in a way

analogous to the unit root (ADF) testing discussed earlier. The DF and
ADF tests in this context are known as Engle-Granger (EG) test or
Augmented Engle-Granger (AEG) test.

Engle and Granger (1987) and Engle and Yoo (1987) provide
critical values of the appropriate distribution, which we denote τ

u
,

obtained by Monte Carlo simulations.  Phillips and Ouliaris (1990) obtain
the limiting asymptotic distribution of τ

u
 and provide critical values.
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Since the asymptotic distributions differ according to different trend
variables in cointegrating regression, they provide critical values in three
parts, i.e., when the cointegrating regression contains no constant (nor
trend), only a constant, and both a constant and a time trend. MacKinnon
(1990) provides an approximation formula for computing critical values
for all sample sizes, estimated using surface regressions.  DF/ADF tests
for unit roots and EG/AEG tests for cointegration are now built into
several econometric software packages (e.g., MICROTSP 7.0,

MICROFIT 3.0, ET, SHAZAM 7.0, etc.).

While Engle and Granger (1987) found the second test to have
more stable critical values, Banerjee et al. (1986) preferred the DW
statistic as its distribution is invariant to nuisance parameters such as a
constant. Engle and Granger (1987) also point out that some seemingly
obvious procedures of estimating the cointegrating parameter are
inconsistent, e.g., regressing  ∆y

t
 on  ∆x

t
 and the use of Cochrane-Orcutt

or some other serial correlation correction procedure in the cointegrating
regression.

These single equation methods, however, cannot give us any
indication of the number of cointegration relationships in the system.
Hence the significance of system (multiple equation) methods. The most
popular system method is the Johansen and Juselius (JJ) tests based on
canonical correlations, involving two test statistics  (Johansen 1988;
Johansen and Juselius 1990). The first (trace test) tests the hypothesis
that there are at most r cointegrating vectors, and the second (maximum
eigenvalue test) tests the null hypothesis that there are  r cointegrating
vectors against the hypothesis that there are  r+1 cointegrating vectors.
Johansen and Juselius (1990) recommend the second test as better.

In the vector autoregression (VAR) model, all the variables are
treated as endogenous, so that

Y
t   

=  π
i
Y

t-i  
+ e

t  
where e

t
 ~ iin(0, Ω ) for all i = 1, 2, …, p.       (9)

When the set of series  are I(1), the system can be formulated in
terms of first differences in an equilibrium-correction form as (Hendry,
Pagan and Sargan 1984; Engle and Granger 1987; Johansen 1988;
Banerjee, Dolado, Galbraith and Hendry 1993):
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∆Y
t   

=  Σδ
i
∆Y

t-i  
+ γY

t-1
+ e

t 
 for all i = 1, 2, …, p -1.      (10)

The coefficient matrix γ is called the impact matrix and contains
information on the long-run relationships among the variables in the
system. When Y

t
 is I(1), then ∆Y

t
 is I(0) and the system is balanced only

if γ Y
t-1

 also is I(0). If γ has full rank (n), then the vector process Y
t
 is

stationary; and if its rank (r) is equal to zero, γ  is a null vector and  (10)
becomes equivalent to a traditional first-differenced VAR model.
However, with the assumption that Y

t
 is I(1), γ  cannot be full rank; and

rank (γ) = r < n. Hence there exist  r  cointegrting  I(0) linear combinations
of Y

t
. The impact matrix can then be written as  γ = αβ′  , where  α  and

β  are (n x r) matrices of rank r and β′ Y
t
 comprises  r  cointegrating

stationary relations inducing the I(0) system:

∆Y
t   

=  Σδ
i
∆Y

t-i  
+ α (β′ Y

t-1
) + e

t 
 for all  i = 1, 2, …, p -1.

Johansen (1988) and Johansen and Juselius (1990) have derived
the likelihood ratio test to determine the cointegrating rank (r) of γ. The
null hypothesis that there are at most  r  (i.e., 0 ≤ r ≤ n) cointegrating
vectors (cvs) is tested using the trace test with the statistics:

Trace = - T Σ log
e
(1 - λ

i
),   for  i = r+1, . …, n  and  r = 0, 1, …, n-1,

where  λ
r+1

, λ
r+2

,  …, λ
n
  are the (n - r) smallest eigenvalues. This tests

Ho: r cvs against H
1
: > r cvs. Thus the first row tests Ho: r = 0 against H

1
:

r > 0;  if this is significant, Ho is rejected and the next row is considered.
Thus the rank (r) is chosen as the last significant statistic, or as zero if
the first is not significant.

The likelihood ratio test statistic for the null hypothesis of r
cointegrating vectors against the alternative of r+1 cointegrating vectors
is the maximum eigenvalues using

λ
max

 =  - T log
e
(1 - λ

r+1
). This tests Ho: r cvs against H

1
: r + 1

cvs. Thus the first row tests Ho: r = 0 against H
1
: r = 1;  if this is significant,

Ho is rejected and the next row is considered.

The distributions of these statistics are functionals of vector
Brownian motion and their critical values are tabulated by, inter alia,
Johansen (1988) and Johansen and Juselius (1990). There is a potential
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problem with the size of these test statistics in small samples, that is, the
JJ procedure tends to over-reject the null when it is true (Reimers 1992).
Hence a small-sample correction is applied to these statistics, replacing
T by T- np, where T is the number of observations, n is the number of
variables and p is the lag length of the VAR.The JJ procedure is now
programmed as specific commands in MICROFIT, PC-GIVE, E-VIEWS,

and has a separate software package CATS in RATS.

3.  Granger  Causality

Consider the following equations:

Y
t 
= Σα 

i
Y

t- i  
+ Σβ 

i
x

t- i
  + e

1t 
, (11)

x
t 
= Σγ 

i
Y

t- i  
+ Σδ 

i
x

t- i
  + e

2t 
, (12)

where the summations are for some lag length  k, and e
1t 

and e
2t
 are

independently distributed white noises.

(11) hypothesises that the current value of  y is related to past
values of  y itself and those of  x, while (12) postulates a similar behaviour
for  x.

We have the following implications:

i) x does not ‘Granger-cause’ y  if, and only if, β
i 
≡ 0, for all i, as

a group.  Thus the measure of linear feedback  from x to y is zero (Geweke
1982). That is, the past values of x do not help to predict  y. In this case,
y is exogenous with respect to x (Engle et al. 1983).

ii)  Similarly, y does  not ‘Granger-cause’ x, if, and only if, γ
i
 ≡ 0

for all i  as a group; the measure of linear feedback from y to x is zero.
That is, the past values of y fail to help predict x. Here x is exogenous
with respect to y. If the lagged terms have significant non-zero
coefficients, then there is ‘causality’ or feedback in both directions.

The ‘Granger non-causality’ may be tested by estimating the
general (unrestricted) model (11) [or (12)], and comparing the residual
sum of squares from it with that from the restricted model without the
lagged x values in (11)  [or lagged  y  values in  (12)]  by  means  of an
F-test.
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Though ‘Granger causality’ is concerned with short run
forecastability, while cointegration, with long run equilibrium, the two
(different) concepts can be brought together in an error correction model
(ECM). Suppose y

t
 and x

t
 are both I(1) series and they are cointegrated

such that u
t
 = y

t
  - βx

t
  is I(0). As we have seen earlier, this cointegrtaed

system can be written in terms of ECM as:

∆y
t 
= -δ

1
u

t-1 
+ lagged {∆y

t
 , ∆x

t
} + θ(L)ε

1t
, (13)

∆x
t 
= -δ

2
u

t-1 
+ lagged {∆y

t
 , ∆x

t
} + θ(L)ε

2t
, (14)

where θ(L)ε
1t
 and θ(L)ε

2t
 are finite order moving averages and one of

δ
1
, δ

2 
≠ 0.  In the ECM, the error correction term (EC), u

t-1
, ‘Granger

causes’ ∆y
t
 or  ∆x

t
 (or both). As u

t-1
 itself is a function of y

t-1 
and x

t-1
,

either x
t
 is ‘Granger caused’ by y

t-1 
 or y

t
 by x

t-1
. That is, the coefficient of

EC contains information on whether the past values of the variables
‘affect’ the current values of the variable under consideration. A
significant coefficient implies that past equilibrium errors play a role in
‘affecting’ the current outcomes. This then implies that there must be
some ‘Granger causality’ between the two series in order to induce them
towards equilibrium. The short run dynamics are captured through the
individual coefficients of the difference terms.

Though popularly known as Granger (non-) 'causality' test (Granger
1969), it was first suggested by Wiener (Wiener 1956), and is often
referred to more properly as Wiener-Granger 'causality'  test. This model
has prompted a great deal of debate among economists (for example,
Zellner 1979) and even philosophers (for example, Holland 1986).
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